Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTがエンジニアに与える影響2 / how ChatGPT affect for e...
Search
Naoki Kishida
April 22, 2023
Programming
0
660
ChatGPTがエンジニアに与える影響2 / how ChatGPT affect for engineers2
4/22のプレゼンテーションの資料です
Naoki Kishida
April 22, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
LLMベースAIの基本 / basics of LLM based AI
kishida
12
3.2k
Java 24まとめ / Java 24 summary
kishida
3
700
AI時代のプログラミング教育 / programming education in ai era
kishida
25
26k
Java Webフレームワークの現状 / java web framework at burikaigi
kishida
10
2.5k
AI時代に求められるプログラマの能力 / ability of programmer in AI era
kishida
19
13k
Java 23の概要とJava Web Frameworkの現状 / Java 23 and Java web framework
kishida
2
540
Java Webフレームワークの現状 / java web framework
kishida
10
11k
Is Object Oriented nesessary? COSCUP 2024
kishida
0
200
プログラムに組み込みたい人向けLLMの概要 / LLM for programmers
kishida
3
810
Other Decks in Programming
See All in Programming
リッチエディターを安全に開発・運用するために
unachang113
1
350
Dart 参戦!!静的型付き言語界の隠れた実力者
kno3a87
0
160
Bedrock AgentCore ObservabilityによるAIエージェントの運用
licux
8
550
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
110
なぜ今、Terraformの本を書いたのか? - 著者陣に聞く!『Terraformではじめる実践IaC』登壇資料
fufuhu
3
370
JetBrainsのAI機能の紹介 #jjug
yusuke
0
180
オンコール⼊⾨〜ページャーが鳴る前に、あなたが備えられること〜 / Before The Pager Rings
yktakaha4
2
1.2k
あまり知られていない MCP 仕様たち / MCP specifications that aren’t widely known
ktr_0731
0
210
MCPで実現できる、Webサービス利用体験について
syumai
7
2.3k
No Install CMS戦略 〜 5年先を見据えたフロントエンド開発を考える / no_install_cms
rdlabo
0
420
「次に何を学べばいいか分からない」あなたへ──若手エンジニアのための学習地図
panda_program
3
710
構造化・自動化・ガードレール - Vibe Coding実践記 -
tonegawa07
0
170
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
6.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Optimizing for Happiness
mojombo
379
70k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
420
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Building Applications with DynamoDB
mza
95
6.5k
Designing Experiences People Love
moore
142
24k
Transcript
04/22/2023 1 ChatGPTが エンジニアに与える影響 LINE Fukuoka きしだ なおき 2023/4/22 ITエンジニアのためのライトニングトーク
04/22/2023 2 ChatGPTとは • OpenAIが開発したチャットAI • GPT4、GPT3.5ベース • 2021年9月までのほぼすべてのWebテキストで学習 •
GPT4はかなり性能が高い • 入力の続きの単語を生成 • 繰り返すことで返答の文章を生成する ※ generated by Stable Diffusion
GPT • GPT = Generative Pre-trained Transformer • Transformerが大切 •
Transformer • アテンションに基づくエンコーダー&デコー ダー • 「アテンション」は文章のどこに注目するかを 決める仕組み
Java song!
微調整(Fine Tune)
ツールの使い方
コード生成
Webアクセスするコード
Javaに変換
コードの修正
コードの実行
実際の実行結果
OpenAI API • ChatGPTの機能をプログラムから利用可能 • Chat API • テキストに対してテキストを返す •
Embedding API • テキストの特徴をあらわす1500次元のベクトルを得る
例 1. ブログのエントリをEmbeddingでベクトルをとって保存 2. 質問からベクトルを得て近いベクトルのエントリを検索 3. 得られたエントリから質問の回答を生成
ChatGPTを信じてはいけない • 「もっともありそうな続き」を生成しているだけ • それでコードが生成できていることは驚きだけど、論理的に考えている わけではない • ChatGPTはそれが正しいかどうか気にしていない • 流れるようにウソをつく
もっと賢くなるんでは? • 学習データの限界 • いまのAIは学習データの量で性能の上限がきまる • ほぼすべてのWebテキストを使っているので、これ以上の学習データ がない • 計算機の限界
• GPT4を学習させた計算機クラスタより大きいものを作るのは困難 • いまでも運用に1億円/日かかっている • ウソが混ざりがちという性質は変わらない
まとめ • アイデアを得るのに強力なツールになる • とりかかりになるコードの生成に強い • GitHubのCode Copilotを使うと定型コードに時間をとられなくな る •
VS CodeにGPTを組み込む • 2つの条件が組み合わさると難しくなる • 実際のコードは複数の条件を満たすので人間が書く必要がある • セキュリティなどコンテキストをもった正しいコードは人間が注 意して確認する必要がある