Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
360
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Agent Skill Acquisition for Large Language Models via CycleQD
kiyohiro8
0
3
Active Retrieval Augmented Generation
kiyohiro8
3
850
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
410
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
550
CycleGAN and InstaGAN
kiyohiro8
0
1.5k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
980
Attention on Attention for Image Captioning
kiyohiro8
1
510
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
160
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.3k
Other Decks in Technology
See All in Technology
Android Audio: Beyond Winning On It
atsushieno
0
2.4k
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.5k
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.3k
Create Ruby native extension gem with Go
sue445
0
120
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
190
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
10k
OCI Oracle Database Services新機能アップデート(2025/06-2025/08)
oracle4engineer
PRO
0
180
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
320
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
4
580
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
270
今日から始めるAWSセキュリティ対策 3ステップでわかる実践ガイド
yoshidatakeshi1994
0
110
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Context Engineering - Making Every Token Count
addyosmani
3
58
Gamification - CAS2011
davidbonilla
81
5.4k
KATA
mclloyd
32
14k
Being A Developer After 40
akosma
90
590k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Unsuck your backbone
ammeep
671
58k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings