Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
300
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Active Retrieval Augmented Generation
kiyohiro8
3
700
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
340
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
460
CycleGAN and InstaGAN
kiyohiro8
0
1.4k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
940
Attention on Attention for Image Captioning
kiyohiro8
1
470
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
130
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.2k
Other Decks in Technology
See All in Technology
Wantedly での Datadog 活用事例
bgpat
1
410
株式会社ログラス − エンジニア向け会社説明資料 / Loglass Comapany Deck for Engineer
loglass2019
3
31k
KubeCon NA 2024 Recap: How to Move from Ingress to Gateway API with Minimal Hassle
ysakotch
0
200
Postman と API セキュリティ / Postman and API Security
yokawasa
0
200
20241220_S3 tablesの使い方を検証してみた
handy
3
250
フロントエンド設計にモブ設計を導入してみた / 20241212_cloudsign_TechFrontMeetup
bengo4com
0
1.9k
NW-JAWS #14 re:Invent 2024(予選落ち含)で 発表された推しアップデートについて
nagisa53
0
250
LINEヤフーのフロントエンド組織・体制の紹介【24年12月】
lycorp_recruit_jp
0
530
Microsoft Azure全冠になってみた ~アレを使い倒した者が試験を制す!?~/Obtained all Microsoft Azure certifications Those who use "that" to the full will win the exam! ?
yuj1osm
1
110
KnowledgeBaseDocuments APIでベクトルインデックス管理を自動化する
iidaxs
1
260
How to be an AWS Community Builder | 君もAWS Community Builderになろう!〜2024 冬 CB募集直前対策編?!〜
coosuke
PRO
2
2.8k
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
370
Featured
See All Featured
Designing Experiences People Love
moore
138
23k
How STYLIGHT went responsive
nonsquared
95
5.2k
Thoughts on Productivity
jonyablonski
67
4.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Speed Design
sergeychernyshev
25
670
Practical Orchestrator
shlominoach
186
10k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Into the Great Unknown - MozCon
thekraken
33
1.5k
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings