Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
360
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Agent Skill Acquisition for Large Language Models via CycleQD
kiyohiro8
0
3
Active Retrieval Augmented Generation
kiyohiro8
3
860
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
420
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
560
CycleGAN and InstaGAN
kiyohiro8
0
1.5k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
980
Attention on Attention for Image Captioning
kiyohiro8
1
510
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
170
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.3k
Other Decks in Technology
See All in Technology
許しとアジャイル
jnuank
1
130
KMP の Swift export
kokihirokawa
0
340
ZOZOのAI活用実践〜社内基盤からサービス応用まで〜
zozotech
PRO
0
200
Oracle Cloud Infrastructure:2025年9月度サービス・アップデート
oracle4engineer
PRO
0
470
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
2
900
extension 現場で使えるXcodeショートカット一覧
ktombow
0
220
オープンソースでどこまでできる?フォーマル検証チャレンジ
msyksphinz
0
100
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
25
17k
about #74462 go/token#FileSet
tomtwinkle
1
430
"プロポーザルってなんか怖そう"という境界を超えてみた@TSUDOI by giftee Tech #1
shilo113
0
120
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
1
490
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
78k
Featured
See All Featured
It's Worth the Effort
3n
187
28k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
A Tale of Four Properties
chriscoyier
160
23k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
How GitHub (no longer) Works
holman
315
140k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Producing Creativity
orderedlist
PRO
347
40k
Embracing the Ebb and Flow
colly
88
4.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings