Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
310
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Active Retrieval Augmented Generation
kiyohiro8
3
730
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
350
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
470
CycleGAN and InstaGAN
kiyohiro8
0
1.4k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
950
Attention on Attention for Image Captioning
kiyohiro8
1
480
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
140
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.3k
Other Decks in Technology
See All in Technology
プロダクト開発、インフラ、コーポレート、そしてAIとの共通言語としての Terraform / Terraform as a Common Language for Product Development, Infrastructure, Corporate Engineering, and AI
yuyatakeyama
6
1.6k
NOSTR, réseau social et espace de liberté décentralisé
rlifchitz
0
130
2週に1度のビッグバンリリースをデイリーリリース化するまでの苦悩 ~急成長するスタートアップのリアルな裏側~
kworkdev
PRO
8
6.5k
Agentic AI時代のプロダクトマネジメントことはじめ〜仮説検証編〜
masakazu178
3
380
extensionとschema
yahonda
1
100
消し忘れリソースゼロへ!私のResource Explorer活用法
cuorain
0
140
SIEMによるセキュリティログの可視化と分析を通じた信頼性向上プロセスと実践
coconala_engineer
1
2.9k
ソフトウェア開発現代史:製造業とソフトウェアは本当に共存できていたのか?品質とスピードを問い直す
takabow
15
5.3k
Platform EngineeringがあればSREはいらない!? 新時代のSREに求められる役割とは
mshibuya
2
4k
ソフトウェアアーキテクトのための意思決定術: Software Architecture and Decision-Making
snoozer05
PRO
17
4k
レイクハウスとはなんだったのか?
akuwano
15
2k
Zenn のウラガワ ~エンジニアのアウトプットを支える環境で Google Cloud が採用されているワケ~ #burikaigi #burikaigi_h
kongmingstrap
18
6.8k
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building an army of robots
kneath
302
45k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
600
Into the Great Unknown - MozCon
thekraken
34
1.6k
We Have a Design System, Now What?
morganepeng
51
7.4k
Gamification - CAS2011
davidbonilla
80
5.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
3k
Typedesign – Prime Four
hannesfritz
40
2.5k
GitHub's CSS Performance
jonrohan
1030
460k
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings