Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TransGAN: Two Transformers Can Make One Strong GAN
Search
kiyo
April 18, 2021
Technology
0
360
TransGAN: Two Transformers Can Make One Strong GAN
第六回全日本コンピュータビジョン研究会 Transformer読み会での発表資料です
kiyo
April 18, 2021
Tweet
Share
More Decks by kiyo
See All by kiyo
Agent Skill Acquisition for Large Language Models via CycleQD
kiyohiro8
0
13
Active Retrieval Augmented Generation
kiyohiro8
3
900
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
440
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
590
CycleGAN and InstaGAN
kiyohiro8
0
1.5k
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
990
Attention on Attention for Image Captioning
kiyohiro8
1
530
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
180
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.4k
Other Decks in Technology
See All in Technology
Meshy Proプラン課金した
henjin0
0
180
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
360
Werner Vogelsが14年間 問い続けてきたこと
yusukeshimizu
2
310
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
160
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
190
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
1
370
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.1k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.4k
AI時代、1年目エンジニアの悩み
jin4
1
150
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
170
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
What's in a price? How to price your products and services
michaelherold
247
13k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Claude Code のすすめ
schroneko
67
210k
Ethics towards AI in product and experience design
skipperchong
2
190
Writing Fast Ruby
sferik
630
62k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
170
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
50
Transcript
TransGAN: Two Transformers Can Make One Strong GAN 第六回 全日本コンピュータビジョン勉強会
Transformer 読み会 2021/04/18 kiyo (hrs1985)
自己紹介 twitter : @hrs1985 Qiita : https://qiita.com/hrs1985 github : https://github.com/kiyohiro8
株式会社カブクで機械学習エンジニアをしています。 深層生成モデル、画像の変換 ゲームの強化学習 あたりに興味があります。 twitter アイコン
論文の概要 TransGAN: Two Transformers Can Make One Strong GAN (https://arxiv.org/abs/2102.07074)
1. Transformer のみで GAN を構成した (CNN が非必須であることを示した) 2. アーキテクチャと学習方法を工夫することで CIFAR-10 や STL-10 で CNN ベースの GAN に匹敵する性能が出せた。 モデルは https://github.com/VITA-Group/TransGAN に公開されている ただし推論のみ
Generative Adversarial Models Generator はノイズ (z) から fake sample を作る
Discriminator は入力された画像の real / fake を判別する
Attention (Transformer) と GAN CNN + Attention の GAN は
Self-Attention GAN などで使われており、性能向上に寄与している 今回は Convolutional Layer を一切使わずにAttention (Transformer) のみで GAN を構成した Self-Attention Generative Adversarial Networks (https://arxiv.org/abs/1805.08318) より
Transformer Generator / Discriminator Generator / Discriminator ともに Transformer だけで構成されている
Transformer Encoder Block Multi-Head Self Attention → MLP を繋げて 1つのブロックにする
Multi-Head Self Attention と MLP の前に Layer Normalization を挟む
Memory-Friendly Generator 画像サイズは NLP でいう文の長さ (単語数) に相当する。 32x32 の低解像度でも 1024
単語の文となってしまい Attention の計算量がかさむ。 Transformer Encoder を何回か通す → UpScaling (pixel shuffle) →これを繰り返し、目的の画像サイズまで大きくしていく ←各 pixel が NLP でいう word に相当する
Discriminator 画像を 8x8 のパッチに分割 →Transformer Encoder を通す →最終層で特徴を集約して real /
fake 判定
シンプルな TransGAN Transformer の Generator はよい Transformer の Discriminator はダメ
データ拡張 データ拡張 (DiffAug) を導入することで IS も FID も改善
Self-Supervised Auxiliary Task 補助タスクとして、Generator に画像の高解像度化タスクも解かせる 低解像度画像 高解像度化された画像 MSE loss
Locality-Aware Initialization query 位置 (赤) に対して参照できる key の範囲を制限する 学習初期では狭く、後期では広い範囲を参照する
モデルサイズの効果 モデルサイズが大きいほど強い
既存手法との比較 CIFAR-10、STL-10 で SoTA またはそれに匹敵する程度の性能が出た
出力画像例
結論 ・Transformer のみで構成された GAN である TransGAN を提案した ・学習を工夫することで CNN ベースの
GAN に匹敵する性能が出せた ・今後自然言語処理分野のテクニックを取り入れることで性能向上ができるかも?
None
Network Architecture
学習の計算量
Settings