Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CycleGAN and InstaGAN
Search
kiyo
November 21, 2019
Technology
0
1.5k
CycleGAN and InstaGAN
#8【画像処理 & 機械学習】論文LT会で発表した内容です。GANを用いた画像変換手法である InstaGAN と CycleGAN の紹介です。
kiyo
November 21, 2019
Tweet
Share
More Decks by kiyo
See All by kiyo
Active Retrieval Augmented Generation
kiyohiro8
3
840
Reinforcement Learning: An Introduction 輪読会 第5回
kiyohiro8
0
400
Reinforcement Learning: An Introduction 輪読会 第3回
kiyohiro8
0
550
TransGAN: Two Transformers Can Make One Strong GAN
kiyohiro8
0
350
Bridging_by_Word__Image-Grounded_Vocabulary_Construction_for_Visual_Captioning.pdf
kiyohiro8
0
980
Attention on Attention for Image Captioning
kiyohiro8
1
510
Progressive Growing of GANs for Improved Quality, Stability, and Variation
kiyohiro8
1
160
Graph-Based Global Reasoning Networks
kiyohiro8
0
1.3k
Other Decks in Technology
See All in Technology
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
4
1.7k
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
130
Segment Anything Modelの最新動向:SAM2とその発展系
tenten0727
0
670
【CEDEC2025】ブランド力アップのためのコンテンツマーケティング~ゲーム会社における情報資産の活かし方~
cygames
PRO
0
280
Amazon Bedrock AgentCoreのフロントエンドを探す旅 (Next.js編)
kmiya84377
1
140
GMOペパボのデータ基盤とデータ活用の現在地 / Current State of GMO Pepabo's Data Infrastructure and Data Utilization
zaimy
3
210
反脆弱性(アンチフラジャイル)とデータ基盤構築
cuebic9bic
3
170
隙間時間で爆速開発! Claude Code × Vibe Coding で作るマニュアル自動生成サービス
akitomonam
3
260
OPENLOGI Company Profile for engineer
hr01
1
37k
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
670
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
340
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
130
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
4 Signs Your Business is Dying
shpigford
184
22k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
800
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Statistics for Hackers
jakevdp
799
220k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
CycleGAN and InstaGAN 第8回画像処理 & 機械学習】論文LT会 2019年11月21日(木) @hrs1985
自己紹介 twitter : @hrs1985 https://qiita.com/hrs1985 https://kiyo.qrunch.io/ 機械学習エンジニアをしています。 最近転職して7月から東京で働いてます。 前々職では実験生物学やってました。 •
深層生成モデル、画像の変換 • 強化学習 • 生物学・化学への機械学習の応用 に興味があります。
紹介する論文 CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (ICCV
2017) https://arxiv.org/abs/1703.10593 InstaGAN InstaGAN: Instance-aware Image-to-Image Translation (ICLR 2019) https://arxiv.org/abs/1812.10889
画像のスタイル変換 Paired 各ドメインの画像が対になっている Unpaired 各ドメインの画像が対になっていない あるドメインの画像を別のドメインへの対応する画像に変換する操作
CycleGAN による画像変換 左: CycleGAN の論文中の例、右: 自分で実験してみた例
CycleGAN 2つのGeneratorはそれぞれX→Y、Y→Xの変換を行い、 Discriminatorはそれが元々そのドメインの画像だったか Generatorによって変換された画像かを見破る。
CycleGAN の Loss Domain loss (GAN Loss) Content Loss (Cycle
Consistency Loss)
CycleGAN
CycleGAN の問題点 ・オブジェクト形状が大きく変わるような変換はできない。 ・変換するべきオブジェクトが画像のどの部分であるかを明示して変換することはできない。
InstaGAN ・CycleGAN で失敗しやすい、オブジェクト形状が変化するような変換にも対応できる。 ・該当するインスタンスのうち、一部だけを変換することもできる。
InstaGAN
Generator 1. 画像用 Encoder とマスク用 Encoder で特徴を抽出 2. マスク特徴の総和を取っておく 3.
画像用の Decoder に画像特徴とマスク特徴の総和を 入力して変換された画像を得る 4. マスク用の Decoder に画像特徴とマスク特徴の総和と マスク特徴を入力して変換されたマスクを得る
Discriminator 1. 画像用 Encoder とマスク用 Encoder で特徴を抽出 2. マスク特徴の総和を取る 3.
Classifier に画像特徴とマスク特徴の総和を入力して判 別する
InstaGAN の Loss Domain Loss (GAN Loss) Content Loss Domain
Loss: target domain っぽいかどうかを判別するための Loss Content Loss: 元画像の内容や文脈を保持するための Loss
Content Loss の中身 ドメイン X の画像を一旦 Y に変換してからもう一度 X に変換したら元画像戻って欲しいという願い
(CycleGAN の Cycle Consistency Loss と同じ) GXY/GYX はそれぞれドメイン X/Y の画像についてのみ変更してほしいという願い (元々 Y/X だった画像は変更しないでほしい ) マスク領域以外の場所は変更しないでほしいという願い
Sequential Translation 一度に全てのマスクを変換するのではなく、 各 iteration では少数のマスクだけを変換する手法を使っています。
Sequential Translation One: 全てのマスクを 1 iteration で変換 Seq: Sequential に少数ずつ変換 train時/inference時 Train
時にも Inference 時にも Sequential Translation を行った方がよいらしい (一番右)。
結果 ズボン⇔スカートの変換 CycleGANよりも綺麗です。 また、右側中段のように一人分だけ変換することもできています。
結果 ヒツジ⇔キリンの変換 ちゃんとヒツジとキリンの形になっています。 また、InstaGAN では背景部分の変化が小さいです (左側上段など)
結果 ウマ⇔車の変換 この変換の出来は微妙に見えますが論文中では上手くいってる扱いぽいです。 確かにCycleGANよりはマシに見えます。
おまけ 自分で実装してみるために参考に著者実装を見たのですが実装が酷すぎて読むのがつらいです。 各メソッドの全ての変数に selfがついているのでメソッドの中身だけ追っても処理内容が見えづらい あとPyTorchの使い方覚えてほしい
参考 CycleGAN (https://qiita.com/hrs1985/items/050acb15ce33675f07ec) CycleGANを用いたスタイル変換 (https://qiita.com/hrs1985/items/926f9c4e635aac659675) CycleGANを用いたスタイル変換 (2) リベンジ編 (https://qiita.com/hrs1985/items/820d9b0b919fe0425e46) CycleGANのPytorch実装
(https://github.com/kiyohiro8/CycleGAN-pytorch) CycleGANの実装はあまりカッコよくないので色々修正したい。 InstaGANの実装も今やっているので上手くできたら githubに上げます。