Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
組込エンジニアのための深層学習
Search
kmt-t
September 04, 2019
Programming
1
18
組込エンジニアのための深層学習
kmt-t
September 04, 2019
Tweet
Share
More Decks by kmt-t
See All by kmt-t
Deep Learningと超解像
kmt_t
0
22
Design by Contractとホーア論理
kmt_t
0
37
GCPと機械学習
kmt_t
1
47
進化するART
kmt_t
0
24
Other Decks in Programming
See All in Programming
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
4.7k
Cloudflare AgentsとAI SDKでAIエージェントを作ってみた
briete
0
130
overlayPreferenceValue で実現する ピュア SwiftUI な AdMob ネイティブ広告
uhucream
0
170
Domain-centric? Why Hexagonal, Onion, and Clean Architecture Are Answers to the Wrong Question
olivergierke
2
680
複雑化したリポジトリをなんとかした話 pipenvからuvによるモノレポ構成への移行
satoshi256kbyte
1
930
CSC305 Lecture 01
javiergs
PRO
1
400
ネイティブ製ガントチャートUIを作って学ぶUICollectionViewLayoutの威力
jrsaruo
0
140
チームの境界をブチ抜いていけ
tokai235
0
110
CSC509 Lecture 06
javiergs
PRO
0
260
Your Perfect Project Setup for Angular @BASTA! 2025 in Mainz
manfredsteyer
PRO
0
150
オープンソースソフトウェアへの解像度🔬
utam0k
2
240
非同期jobをtransaction内で 呼ぶなよ!絶対に呼ぶなよ!
alstrocrack
0
570
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Site-Speed That Sticks
csswizardry
11
890
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Building Applications with DynamoDB
mza
96
6.6k
Raft: Consensus for Rubyists
vanstee
139
7.1k
Embracing the Ebb and Flow
colly
88
4.8k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
Git: the NoSQL Database
bkeepers
PRO
431
66k
RailsConf 2023
tenderlove
30
1.2k
Transcript
ࠐΤϯδχΞͷͨΊͷਂֶश ൃදऀ kmt-t ࠐΤϯδχΞͷͨΊͷਂֶश 1
ࣗݾհ • ໊લ : kmt-t or kmt_t • ৬ۀ :
ࠐϓϩάϥϚ • ஶॻ : AndroidͷԾϚγϯ • ௗऔݝຽͰ͢ • ࠷ۙస৬͠·ͨ͠ ࠐΤϯδχΞͷͨΊͷਂֶश 2
ࣗݾհ • ઐ • ը૾ॲཧ (ओʹ࠷దԽ) • ίϯϐϡʔλάϥϑΟοΫε • ϑΝΠϧγεςϜ
• ԾϚγϯ ࠐΤϯδχΞͷͨΊͷਂֶश 3
ࠓͷׂ࣌ؒ • ಋೖ (5) • ਂֶशҰൠ (10) • ࠐਂֶश (20)
• JetsonTX1/TX2հ (10) • ͔ͳΓਐߦ͕͍ͷͰࢿྉࣄલ͠·͢ ࠐΤϯδχΞͷͨΊͷਂֶश 4
ಋೖ ࠐΤϯδχΞͷͨΊͷਂֶश 5
͜͏͍͏͜ͱͬͯ·͢ • σδλϧΧϝϥ͚ղ૾ • ίϯσδը૾ͷҰ؟ը૾ͷม • ࣄͰͳ͘झຯͰ͢ ࠐΤϯδχΞͷͨΊͷਂֶश 6
ैདྷख๏ (SRCNN) • waifu2xͷख๏ • ॖখͷٯϑΟϧλΛʮճؼʯ͢Δ • ྼԽલ૾ͱྼԽޙը૾ͷϖΞ • શ͘ಉҰඃࣸମͷը૾ϖΞ͕ඞཁ
• ը૾ϖΞ͕༻ҙͰ͖ΔΠϥετ͖ ࠐΤϯδχΞͷͨΊͷਂֶश 7
ఏҊख๏ • ߴղ૾ใΛʮੜʯ͢Δ • ը૾Λղ૾Ͱ֊Խ͢Δ • ϥϓϥγΞϯϐϥϛου • ղ૾ʙߴղ૾ͷը૾ϨΠϠ •
ಉ͡ඃࣸମͷը૾ϖΞ͕ෆཁ • ը૾ϖΞ͕༻ҙͰ͖ͳ͍σδλϧΧϝ ϥ͖ ࠐΤϯδχΞͷͨΊͷਂֶश 8
GANͷΈ • ϥϯμϜͳZ͔Βը૾ੜ • ੜ͞Εͨը૾͕ຊʹ͍͔ۙผ • ੜը૾͕ผෆՄʹͳΔΑ͏ֶश • Z͕ԿΛද੍͔͢ޚෆՄೳ ࠐΤϯδχΞͷͨΊͷਂֶश
9
Condi&onal GANͷΈ • ҙຯͷ͋ΔYΛ༩͑ͯը૾ੜ • ʮੜ͞Εͨը૾ͱYͷΈ߹Θͤʯ ͕ຊʹ͍͔ۙผ • ੜը૾͕ผෆՄʹͳΔΑ͏ֶश •
Y͕ԿΛද੍͔͢ޚՄೳ • ͜Ε͍ͬͯ·͢ ࠐΤϯδχΞͷͨΊͷਂֶश 10
ࠓͷൃදͷత • ΈΜͳձࣾͰਂֶश͏Μ͕ͪ͘Ͱ͖Δͷ͕ඪ ࠐΤϯδχΞͷͨΊͷਂֶश 11
࣭ • ਂֶशͷجຊతͳΈΛͬͯΔਓʂ ࠐΤϯδχΞͷͨΊͷਂֶश 12
ͿͬͪΌ͚ • ۀͰΔఔͷਂֶश͘͠ͳ͍ • ੈؒҰൠͷߴͳֶ͕ඞཁͱ͍͏ᷚӕ • ߴߍཧܥίʔεఔʴภඍͰे • ౷ܭֶ͕ඞཁͳͷԠ༻ ࠐΤϯδχΞͷͨΊͷਂֶश
13
ࢀߟॻ -ʮθϩ͔Β࡞ΔDeep Learningʯ - ඇৗʹ؆୯Ͱ͢ - ͍ࣜ͠ग़͖ͯ·ͤΜ - ϑϨʔϜϫʔΫ͕͔͚Δ͙Β͍ͷࣝ ʹ͖ͭ·͢
- (͑ͬͦΜͳʹ؆୯ͳͷʁ) ࠐΤϯδχΞͷͨΊͷਂֶश 14
ਂֶशҰൠ ࠐΤϯδχΞͷͨΊͷਂֶश 15
ਂֶशͷجຊతͳϞσϧ • σʔλΛࣝผ͢ΔʮྨϞσϧʯ • ؔΛۙࣅ͢ΔʮճؼϞσϧʯ • σʔλΛ፻͢ΔʮੜϞσϧʯ • ΑΓΑ͍ߦಈΛબ͢ΔʮڧԽֶशʯ •
Γ͍ͨ͜ͱ͕͜ΕΒͷͲΕʹ֘͢Δͷ͔ʁ ࠐΤϯδχΞͷͨΊͷਂֶश 16
ϓϩάϥϚ͕Βͳ͍ͱ͍͚ͳ͍͜ͱ • ϓϩάϥϛϯά • ֶश • ਪ • ࠐ։ൃऀʹͱͬͯʮਪʯ͕ॏཁ ࠐΤϯδχΞͷͨΊͷਂֶश
17
ਂֶशͷਪͷΈ • ؆୯ʹઆ໌͠·͢ ࠐΤϯδχΞͷͨΊͷਂֶश 18
શ݁߹ωοτϫʔΫ • ͍͔ͭ͘ͷϊʔυΛ࣋ͭෳͷ • ྡΓ߹͏ͷͯ͢ͷϊʔυΛଓ • ଓॏΈΛ࣋ͪɺग़ྗΛௐ͢Δ • ग़ྗ͕ҙຯͷ͋Δ݁ՌΛग़ྗ͢Δ •
ҙຯ͕͋Δ݁ՌΛग़ྗ͢ΔΑ͏ʹॏΈ Λֶश͢Δ ࠐΤϯδχΞͷͨΊͷਂֶश 19
ίϯϘϦϡʔγϣϯ • ෳνϟϯωϧը૾Ͱߏ • ྡΓ߹͏ͷνϟϯωϧΛଓ • ଓN✕NϐΫηϧͷը૾ϑΟϧλ • N✕NͷϑΟϧλͷΛֶश͢Δ ࠐΤϯδχΞͷͨΊͷਂֶश
20
ਂֶशͷֶशͷΈ • ΞϧΰϦζϜͦΕ΄ͲෳࡶͰͳ͍ • ʮภඍʯͱʮ࿈ʯ͕Ωʔϫʔυ • ࠐΤϯδχΞʹॏཁͰͳ͍ ࠐΤϯδχΞͷͨΊͷਂֶश 21
ͨΒͱߦྻ͕ग़ͯ͘Δཧ༝ • ͷଓߦྻͰදݱ͢Δ΄͏͕ѻ͍͍͢ • ϊʔυྻ͕ϕΫτϧɺॏΈ͕ߦྻ • ίϯϘϦϡʔγϣϯߦྻܭࢉͰՄೳ • ߦྻͩͱBLAS͕͑ΔͷͰ͍ ࠐΤϯδχΞͷͨΊͷਂֶश
22
ܭࢉྫ • ͕ೖྗͷ ൪ͷϊʔυग़ྗ • ͕தؒͷ ൪ͷϊʔυग़ྗ • ͕ೖྗͷ ൪ϊʔυͱதؒ
൪ Λଓ͢ΔΤοδͷॏΈ • தؒͱग़ྗͷܭࢉಉ༷ ࠐΤϯδχΞͷͨΊͷਂֶश 23
࣭ • ͜͜·Ͱͷ༰͍͠Ͱ͔͢ʁ ࠐΤϯδχΞͷͨΊͷਂֶश 24
ࠐਂֶश ࠐΤϯδχΞͷͨΊͷਂֶश 25
ڥߏங • ֶशPC (Tensorflow͔Caffe͋ͨΓ) • ਪࠐ ࠐΤϯδχΞͷͨΊͷਂֶश 26
ֶश༻PCڥ • CPU • CPUAMD RYZENγϦʔζڧྗʹਪ • ίΞ͕ଟ͍ͷ͕ਖ਼ٛ • ΄ͱΜͲͷϑϨʔϜϫʔΫ͕ฒྻԽରԠ
• ϝϞϦ ࠐΤϯδχΞͷͨΊͷਂֶश 27
ֶश༻PCڥ • GPU • GeForce͕ίεύ͕ྑ͍ • ࣌ؒಈ͔͢ͷͰϋΠΤϯυඇਪ • ϝϞϦ͕Γͳ͍ͱಈ͔ͳ͍͜ͱ͋Γ •
ྫྷ٫ʹؾΛ͚ͭΔ ࠐΤϯδχΞͷͨΊͷਂֶश 28
ֶशڥπϘ • λΠϜΠζϚωʔ • ύϥϝʔλͷௐΧοτΞϯυτϥΠ • ૿ͯ͠ผʑʹಈ͔͢ͷ͕Α͍ • ΫϥελͳͲڊେͳܭࢉࢿݯͰܭࢉͨ݁͠ՌͲ͏ͤʹ ࣮Ͱ͖ͳ͍
• ΑͬͯPC͍҆΄͏͕Α͍ ࠐΤϯδχΞͷͨΊͷਂֶश 29
ਪ • Android/LinuxͩͱTensorflow͔ΒϞσϧͷҠߦ͕Ͱ͖Δ • Tensorflow Lite • TensorRT • ͦ͏Ͱͳ͍ࠐΤϯδχΞ͕͕ΜΔ
• ਂֶशͱϑϨʔϜϫʔΫͷ͕ࣝඞཁ • ͰܭࢉՄೳͳܭࢉྔ͔Θ͔Δ͔Ͳ͏͔ ࠐΤϯδχΞͷͨΊͷਂֶश 30
࠷దԽ͕ࠐΤϯδχΞͷ໋ • ͬͯΈ͚ͨͲ͍ͷͰఘΊΔɺ͡Ό͋ବ • ΈΜͳΤϯδχΞͩ͠… • ࣗͰਪϓϩάϥϜΛॻ͘έʔεΘΓͱ͋Δ ࠐΤϯδχΞͷͨΊͷਂֶश 31
FP16ศར • ුಈখ/ූ߸1bit/ࢦ5bit/Ծ10bit • Ұ෦GPU͕HWαϙʔτ • ARM/x86ʹFP16<=>FP32ͷม໋ྩ͕͋Δ • FP32ͩͱͰ͔ա͗ΔͷͰը૾ͷුಈখදݱʹ࠷ద •
গ͠ͷΦʔόʔϔουͰϝϞϦ༻ྔ ࠐΤϯδχΞͷͨΊͷਂֶश 32
ྔࢠԽ • ྔࢠԽͱ͍͏ख๏ • ྔࢠԽͰσʔλαΠζΛখ͘͢͞Δ • GoogleͷTPUͰ࠾༻ ࠐΤϯδχΞͷͨΊͷਂֶश 33
INT8ྔࢠԽ • ߦྻͷཁૉΛ8bitͰදݱ͢Δ • ߦྻͷཁૉͷ࠷େͱ࠷খ • ࠷େͱ࠷খͷؒΛ8bitͰදݱ ࠐΤϯδχΞͷͨΊͷਂֶश 34
INT8ྔࢠԽ • ߦྻʹεΧϥΛՃࢉ͢Δ߹ • ࠷খ/࠷େʹεΧϥΛ͢ • ߦྻͷཁૉͷԋࢉ͕ෆཁ • ߦྻͱεΧϥͷࢉͷΑ͏ͳϥϯΫͷҧ͏ྻಉ࢜ͷԋࢉΛϒ ϩʔυΩϟετͱݺͿ
ࠐΤϯδχΞͷͨΊͷਂֶश 35
ྔࢠԽͷϝϦοτ • ΞΫηϥϨʔλͷফඅిྗ͕Լ͕Δ • ϝϞϦଳҬ͕FP32ͷ1/4ɺFP16ͷ1/2 • ϒϩʔυΩϟετ͕ߴ (ͳ͕࣌͋Δ) ࠐΤϯδχΞͷͨΊͷਂֶश 36
ίϯϘϦϡʔγϣϯͷ࠷దԽ • im2col • Winograd ࠐΤϯδχΞͷͨΊͷਂֶश 37
im2col • ίϯϘϦϡʔγϣϯͰσʔλͷฒͼ ͕ॏཁ 1. ը૾Λ1࣍ݩྻ (ߦํ) ʹల։͢ Δ 2.
ϐΫηϧ͝ͱʹϑΟϧλରͷϐΫ ηϧΛྻํʹల։͢Δ • ίϯϘϦϡʔγϣϯ͕ϕΫτϧͱߦྻ ͱͷੵʹͳΔ ࠐΤϯδχΞͷͨΊͷਂֶश 38
Winograd • ίϯϘϦϡʔγϣϯͷࣜΛมܗ͢Δͱࢉ͕ݮগ͢Δ • ࣗಈͰܭࢉ͢Δπʔϧ͕͋Δ • h#ps:/ /github.com/andravin/wincnn ࠐΤϯδχΞͷͨΊͷਂֶश 39
͜ΕΒҎ֎ʹ࠷దԽͷख๏ • طͷ࠷దԽͬͱͨ͘͞Μ͋Δ • ͨ͘͞Μ͋ΔͷͰΈΜͳͰߟ͑·͠ΐ͏ ࠐΤϯδχΞͷͨΊͷਂֶश 40
JetsonTX1/TX2հ ࠐΤϯδχΞͷͨΊͷਂֶश 41
࠷৽ͷධՁϘʔυ • Jetson Xavier • h/ps:/ /developer.nvidia.com/jetson- xavier • Ϟδϡʔϧܗঢ়͕มΘͬͨͷͰϚβʔ
Ϙʔυ͕TX1/2ͱޓ͡Όͳ͍ʁ • ࠓճچܕͷTX1/TX2ͷ ࠐΤϯδχΞͷͨΊͷਂֶश 42
JetsonTX1/TX2ͷೖखํ๏ • ๏ਓͷ߹ • ϚΫχΧ͋ͨΓ͔Βങ͍ͬͯͩ͘͞ • ݸਓͷ߹ • Amazon.com •
eBay • ຊͰങ͏ͱߴ͍ ࠐΤϯδχΞͷͨΊͷਂֶश 43
JetsonTX1 SE • ΩϟϯϖʔϯͰ25900ԁʂ • ී௨ʹങ͏ͱ80000ԁ͙Β͍ • TX1ͱTX2ͦΜͳʹੑೳมΘΒͳ͍ • h+ps:/
/ryoyo-direct.ryoyo-ss.jp/ register/jetson-se ࠐΤϯδχΞͷͨΊͷਂֶश 44
Jetson TX1/TX2ͷΑ͍ͱ͜Ζ • FP16ͷαϙʔτ • Jetsonͩͱഒԋࢉ • (GeForceഒʹͳΒͳ͍) ࠐΤϯδχΞͷͨΊͷਂֶश 45
Jetson TX1/TX2ͷΑ͍ͱ͜Ζ • TensorRT͕͑Δ • (GeForce͑ͳ͍) • ܾఆతʹωοτϫʔΫΛ࠷దԽ͢Δ • Tensorflow͔ΒσʔλͷΠϯϙʔτՄೳ
ࠐΤϯδχΞͷͨΊͷਂֶश 46
TensorRTͷϕϯνϚʔΫ • h#p:/ /proc-cpuinfo.fixstars.com/2018/04/tensorrt-03/ ࠐΤϯδχΞͷͨΊͷਂֶश 47
Jetson TX1/TX2ͷѱ͍ͱ͜Ζ • ඪ४ͷσΟετϦϏϡʔγϣϯ (L4T) ͕ڊେ • Linux͔ͭGUIࡌ͍ͬͯΔ • ϝϞϦ͕ͨ͘͞Μࡌ͍ͬͯΔ
• ͜ΜͳͷΈࠐΈͰ͍ͨ͘ͳ͍… ͔ͳΓؾ͕࣋ͪҤ͑Δ • ͷݕࠪஔͱ͔ʹ࠷ద͔ ࠐΤϯδχΞͷͨΊͷਂֶश 48
ݸਓతʹࢥ͏ͱ͜Ζ • ͬͱখ͍͞ྖҬʹΈࠐΈΤϯδχΞ͚ͷਂֶशͷԠ༻ ͕ଘࡏ͢Δ • த͕Θ͔͍ͬͯΕେنͳSoCͷੈք͔ΒΕΒΕΔ • NVIDIA͞Μ͕ߟ͑ͯͳ͍ྖҬʹ੨͍ւ͕͋Δ ࠐΤϯδχΞͷͨΊͷਂֶश 49
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ Կ͔࣭ʁ ࠐΤϯδχΞͷͨΊͷਂֶश 50