Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AI、実際どう? - ニーリーの場合
Search
Nealle
July 28, 2025
Programming
0
980
生成AI、実際どう? - ニーリーの場合
2025/7/31
https://find.connpass.com/event/360680/
生成AI、実際どう?【現場エンジニアたちのぶっちゃけトークミートアップ】
Nealle
July 28, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
Pythonに漸進的に型をつける
nealle
1
160
品質ワークショップをやってみた
nealle
0
990
DevHRに全部賭けろ
nealle
0
180
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
0
2.3k
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
340
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
17k
ニーリーにおけるプロダクトエンジニア
nealle
0
1.3k
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
530
事業KPIを基に価値の解像度を上げる
nealle
0
540
Other Decks in Programming
See All in Programming
CSC305 Lecture 13
javiergs
PRO
0
380
React Nativeならぬ"Vue Native"が実現するかも?_新世代マルチプラットフォーム開発フレームワークのLynxとLynxのVue.js対応を追ってみよう_Vue Lynx
yut0naga1_fa
2
2k
CSC305 Lecture 14
javiergs
PRO
0
240
MCPサーバー「モディフィウス」で変更容易性の向上をスケールする / modifius
minodriven
5
1.1k
CSC509 Lecture 08
javiergs
PRO
0
280
coconala_slide_pop.pdf
yukihito13
0
240
自動テストのアーキテクチャとその理由ー大規模ゲーム開発の場合ー
segadevtech
2
700
iOSでSVG画像を扱う
kishikawakatsumi
0
180
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
280
Kotlinで実装するCPU/GPU 「協調的」パフォーマンス管理
matuyuhi
0
300
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
240
Inside of Swift Export
giginet
PRO
1
500
Featured
See All Featured
Scaling GitHub
holman
463
140k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Speed Design
sergeychernyshev
32
1.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
The Cult of Friendly URLs
andyhume
79
6.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
How to Ace a Technical Interview
jacobian
280
24k
Faster Mobile Websites
deanohume
310
31k
Transcript
2025.07.31 生成AI、実際どう?【現場エンジニアたちのぶっちゃけトークミートアップ】 株式会社ニーリー 宮後 啓介 @miya10kei NEALLE 1 生成AI、実際どう? 〜ニーリーにおける生成AI活用の進め方と活用事例〜
2023年にニーリーにジョイン 昨年までSREリードとしてサービスの信頼性やアジリティ向上の施 策を実施。2025年よりプロダクト/事業部門での生成AI活用を推進 するチームを立ち上げ活動中。 2 自己紹介 @miya10kei 株式会社ニーリー プラットフォーム開発G プロダクトAI開発
リーダー Keisuke Miyaushiro 宮後 啓介
3 プロダクト紹介 BtoBtoCのVertical SaaS「Park Direct」を運営 モビリティプラットフォームを目指す
4 1. 生成AIの活用事情 2. 生成AIの活用事例 3. 生成AI、実際どう? 目次
5 1. 生成AIの活用事情
6 生成AIの活用事情 ~ これまで ~ 生成AI活用のさらなる加速 • 価値創造/生産性向上の両面で生成AIの活用を加速させていく • 生成AI活用のカルチャー・モメンタムの醸成
6 2025年下期 2024年下期 2025年上期 生成AIの利用開始 • 生成AIの利用を開始し、チャットボットをPoCで運用 • 生成AI活用についてテーマ発掘 生成AI活用の土台作り • 事業/開発部門での生成AIの本格的な活用を開始 • 価値創造に向けたチームを組成
7 生成AIの活用事情 ~ これから~ 目的 手段 手段 手段 手段 手段
手段 手段 手段 生成AI 目的 目的 目的 目的 目的 目的 目的 目的 (今まで) Issueドリブンな開発 (これから) 生成AIの活用 手段の目的化を恐れず、生成AI ファーストでの目的達成を考える 課題解決という目的達成のために必 要なことを何でもやっていく
8 📣 宣伝 ~ ニーリーのエンジニア組織 ~ 📣
9 生成AIの活用事情 ~ 体制 ~ 全社横断での生成AIの活用を推進するチーム • Google Workspace with
Geminiなどの全社で共通して利用する生成AI ツールの整備 • 生成AIを利用する上でセキュリティ等のルール策定 Corporate Engineer プロダクト AI開発 AI Guild 開発部門の生産性向上を推進するグループ • 領域(既存プロダクト開発/SRE/テスト)毎にメンバーを選出し、 先頭を走ってイネーブリングしていく • Guild外のメンバーも個人個人では生成AIを活用してく 価値 創造 生産性 向上 プロダクト/事業部門の業務に対して生成AIの導入を推進するチーム • プロダクト:価値創造 • 事業部門の業務:生産性向上
10 2. 生成AIの活用事例
目視による必要書類の確からしさと、内容確認を生 成AIで自動化! 11 生成AIの活用事例 ~ プロダクト/事業部門の業務での活用 ~ 必要書類のAI OCR この画像に記載の
情報を読み取って Gemini この画像には以下の情報 が記載されています。... コールセンター通話のAI要約 お客様との通話を生成AIで自動要約することで、手 動での記録業務をゼロに! 会話の 文字おこし お客様 オペレーター 契約変更の手続き 方法は...です。 契約変更について 教えてください? 要約 その他、AIチャットボット、コールセンターガイダンス音声、勉強会動画要約などでも生成AIを活用中
その他、AIコードレビュー、Code2Docs、BackendAPIのMCP化などを実施しています MCP経由でドメイン知識にアクセスさせること で、生成コードの質を向上! 12 生成AIの活用事例 ~ 開発部門での活用 ~ AIコーディングエージェント x
ドメイン知識 AIコーディングエージェント x デザイン 各種MCPを活用して、Design2Codeを実現し、爆 速開発! MCP デザイン (Figma MCP) デザインチェック (Playwright MCP) Webページ AIコーディング エージェント ナレッジベース Bedrock MCP ドメイン知識 (Confluence) Backendコード AIコーディング エージェント VectorDB (OpenSearch) 蓄積 参照 デザインに 沿って実装して XXを実装して デザインシステム (独自MCP)
13 3. 生成AI、実際どう?
14 生成AI、実際どう?~ プロダクト/事業部門の業務での活用 ~ 大きなインパクトをもたらすには大胆な変化が必要 • 既存の業務の置き換えだけでは効果が限定的になる • 大きなインパクトに繋げるには、生成AIファーストに業務を変化させる必要がある インシデントリスクとのバランスを考える必要がある
• ハルシネーションリスクはどこまでもいっても付きまとう • 社内利用に閉じていても、間接的にインシデントを引き起こす可能性があることに注意する 適切なフィードバックループの設計が必要 • 精度は決して100%にならないので、継続的な精度改善は必須 • 適切な人が自然に生成AIの回答に対して、フィードバックをおこなえるような設計が必要
15 生成AI、実際どう? ~ 開発部門での活用 ~ 個々の開発スタイルに合わせた柔軟性な導入が必要 • 個々の開発スタイルでツール導入の感じとり方が異なるので、柔軟に選択できる必要がある ◦ 例:AIコードレビューのタイミング、指摘内容、コメント方法など
利用ツールは一定揃えた方がナレッジ共有は進みやすい • 利用ツールが多岐に渡り、個々の制限によって活用方法に違いが生まれる ◦ 利用ツール:GitHubCopilot/Cursor/ClaudeCode/GeminiCLI/Devin ドキュメント ↔ コード のいい感じの仕組みづくりをおこないたい • 単発でのDocs2Code、Code2Docsはおこなえている • 継続的なフィードバックループを回すための仕組みづくりをしていきたい
ニーリー採用情報など
Thank you 17