Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文解説 Mask2Former
Search
koharite
June 15, 2022
Research
6
1.5k
論文解説 Mask2Former
Presentation for explaining the paper Mask2Former presented at CVPR2022.
koharite
June 15, 2022
Tweet
Share
More Decks by koharite
See All by koharite
論文解説 Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
koharite
0
30
論文解説 DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large Language Models
koharite
0
86
論文解説 EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention
koharite
0
260
論文解説 CoCa: Contrastive Captioners are Image-Text Foundation Models
koharite
0
600
論文解説 LoRA : Low Rank Adaptation of Large Language Models
koharite
1
1.5k
論文解説 ControlNet
koharite
1
5.3k
論文解説 InstructGPT : Training language models to follow instructions with human feedback
koharite
4
2.7k
論文解説 Latent Diffusion Model
koharite
0
3k
論文解説 CVPR2022 NeRF関連
koharite
0
76
Other Decks in Research
See All in Research
-SSII技術マップを通して見る過去・現在,そして未来-
hf149
1
580
Weekly AI Agents News! 7月号 論文のアーカイブ
masatoto
1
160
LLM時代の半導体・集積回路
kentaroy47
1
390
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
masakat0
0
160
[CV勉強会@関東 CVPR2024] Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation / kantocv 61th CVPR 2024
shunk031
1
280
SSII2024 [OS1] 研究紹介100連発(オープンニング)
ssii
PRO
0
460
大規模言語モデルを用いた日本語視覚言語モデルの評価方法とベースラインモデルの提案 【MIRU 2024】
kentosasaki
2
400
marukotenant01/tenant-20240826
marketing2024
0
430
Weekly AI Agents News! 6月号 論文のアーカイブ
masatoto
1
130
[第62回NLPコロキウム]「なりきり」を促すHCI設計:対話型接客ロボットの遠隔操作者へのリアルタイム変換音声フィードバックの適用
nami_ogawa
0
260
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
nanofi
3
290
SSII2024 [OS2] 画像、その先へ 〜モーション解析への誘い〜
ssii
PRO
1
1.2k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
53
8.9k
Gamification - CAS2011
davidbonilla
79
4.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
278
13k
Making Projects Easy
brettharned
113
5.8k
Being A Developer After 40
akosma
83
580k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
32k
Visualization
eitanlees
142
15k
Designing for humans not robots
tammielis
248
25k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
663
120k
Scaling GitHub
holman
458
140k
Teambox: Starting and Learning
jrom
131
8.7k
Practical Orchestrator
shlominoach
185
10k
Transcript
論⽂解説 Masked-attention Mask Transformer for Universal Image Segmentation Takehiro Matsuda
2 論⽂情報 • タイトル:Masked-attention Mask Transformer for Universal Image Segmentation
• 論⽂: https://arxiv.org/abs/2112.01527 • コード: https://github.com/facebookresearch/Mask2Former • 投稿学会: CVPR2022 • 著者: Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar • 所属:Facebook AI Research (FAIR), University of Illinois at Urbana-Champaign (UIUC) 選んだ理由: • Transformerを使ったユニバーサルなアーキテクチャを提案し、セグメンテーション タスクについてSemantic, Instance, Panopticの違いによらず使える • Semantic, Instance, PanopticそれぞれでこれまでのSOTAを超える性能を達成した。
3 論⽂概要 Panoptic Instance Semantic Transformer DecoderにMasked Attentionを導⼊する Transformer decoderをMulti-scaleにする。
学習で得られたMask領域におけるMasked Attentionにより 局所的な特徴を精度良く捉える。 Panoptic: COCO Panopnic val2017 Instance: COCO val2017 Semantic: ADE20K SOTAを達成 Ground Truth Prediction Ground Truth Prediction
4 Segmentationの違い Pixel毎にクラスを認識 指定したクラス の存在する場所 を認識、同じク ラスでも別個体 は分ける (空などを対象ク ラスにしなけれ
ば識別されない Pixelがある) Thingはinstanceと して認識、 Stuff(空や道路)も 認識
5 関連論⽂ DETR( Detection Transformer) : Object DetectionでTransformerを導⼊ MaskFormer: SegmentationでTransformerによるMaskを作り出し、推定する
FAIR (Facebook AI Research)が出しているTransformerを使った画像認識に 関する⼀連の論⽂の流れ DETR MaskFormer TransformerでGlobalな特徴や関係を抽出できる が、⼩さい物体の認識は若⼲苦⼿だったことや ⼤きな計算リソースが必要だった点を改良する。
6 Transformer概説 https://www.slideshare.net/SSII_Slides/ssii2022-ts1-transformer (⽜久⽒資料より)
7 Transformer概説
8 Transformer概説
9 Transformer概説
10 Transformer概説
11 Transformer概説
12 Transformer概説
13 Transformer概説
14 DETR Anchorの設定やNMS(Non Maximum Suppression)を必要としない。
15 DETR ⾼解像度の近傍Pixel(領域) の特徴はCNNネットワーク でエンコードして取得(W, H は1/32, Cは2048) CNNから取り出された画像の特徴量からAttentionを⽤い て各物体の位置や種類の情報に変換
事前に決められた個数Nの物体を予測する 他の予測内容を考慮して⾃⾝の予測するEncoder-Decoder ネットワーク Transformerの出⼒を物体の位置座 標・クラスラベルにデコードする ネットワーク
16 MaskFormer TransformerでSemantic SegmentationとPanoptic Segmentationを⾏う Ground Truth Prediction Ground Truth
Prediction
17 MaskFormer Per-Pixel Classification is Not All You Need for
Semantic Segmentation Binary mask predictionsを取得する transformer decoderでN個のclass predictionsと mask embeddingsを取得 Binary MaskにたいしてPixelごとのmask lossを算出 Maskごとにクラス推定のlossを算出 Segmentation TaskをMask classificationとして、 (1) 画像からN個のbinary mask 領域を作成 (2) 各マスク領域をK個の認識 カテゴリそれぞれに所属 する確率をだす
18 Mask2Former MaskFormerの弱点を改良 • ⼩さな対象の精度が悪い • ⼤きなコンピュータリソース • ⻑い学習時間 panoptic
segmentation (57.8 PQ on COCO) instance segmentation (50.1 AP on COCO) Semantic segmentation (57.7 mIoU on ADE20K). SOTAを達成
19 Masked Attention Masked attention 画像全体から学習されるcross-attentionに変わり、 オブジェクトクエリの予測に基づいて⽣成され たマスクを使って特定領域内でAttentionをとる。 通常のcross attention
Masked attention ⼩物体や物体境界などの細部の認識が改善さ れるのではないか。 We hypothesize that local features are enough to update query features and context information can be gathered through self-attention.
20 Multi-scale high-resolution features Pixel Decoderで元画像の1/32, 1/16, 1/8の Feature Pyramidを作り、Transformer
Decoder もそれぞれに対応する Transformer Decoder 3 x L layers 画像系ではよく使われる解像度のPyramid構造を採⽤ ⼩さなオブジェクトの認識性能を上げる
21 Optimization improvements 通常のTransformer Decoder layerはquery featuresを⽣み出すのにself-attention module, cross- attention,
feed-forward networkを順に送るが、 SelfとMasked(Cross) -attentionの順番を 変え、query featuresを学習可能にした。 Dropoutをなくした。 (これまではresidual connectionsと attention mapsに適応していた)
22 Computer resource reduction MaskFormerでは1つの画像で32GメモリのGPUが必要だった。 PointRendやImplicit PointRendから着想を得て、mask lossを計算するのに、mask全体でなく、 K(=12544=112 x112)個のランダムサンプルされた点で計算する。
推論とground truthとのfinal lossはimportance samplingで別にとったK個のサンプルされた点で⾏う。 最終的に、Mask2Formerでは1つの画像で必要なメモリが18GBから6GBまで削減された。 ⾼解像のMask predictionのため
23 PQ Metrics Average IoU 正しく認識できたものの 割合(F1 scoreに似たもの) IoU >=0.5でTP
Panoptic Segmentationの性能評価指標
24 Experiment – Panoptic Segmentation COCO panoptic val 2017 with
133 categories
25 Panoptic Segmentation Visualization GT GT predict predict
26 Experiment – Instance Segmentation COCO val 2017 with 80
categories
27 Instance Segmentation Visualization GT GT predict predict
28 Experiment – Semantic Segmentation ADE20K val with 150 categories
Single scale Multi scale
29 Semantic Segmentation Visualization GT GT predict predict
30 参考資料 DETR https://arxiv.org/abs/2005.12872 https://github.com/facebookresearch/detr MaskFormer https://arxiv.org/abs/2107.06278 https://github.com/facebookresearch/MaskFormer Panoptic Segmentation
https://arxiv.org/abs/1801.00868 Transformerの最前線 (オムロンサイニックエックス ⽜久⽒) https://www.slideshare.net/SSII_Slides/ssii2022-ts1-transformer