Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Meta AIのSegment Anything Model (SAM) が色々便利そうな話
Search
Makoto Koike
August 14, 2023
Technology
0
790
Meta AIのSegment Anything Model (SAM) が色々便利そうな話
2023/08/13 Unagi.py勉強会 LT資料
Makoto Koike
August 14, 2023
Tweet
Share
More Decks by Makoto Koike
See All by Makoto Koike
Pythonではじめる農業ロボット開発
koike91
0
1.8k
Pythonで不均衡で一貫性のないデータセットを少しだけマシにする話
koike91
1
2.4k
Other Decks in Technology
See All in Technology
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
150
20260204_Midosuji_Tech
takuyay0ne
1
160
Agile Leadership Summit Keynote 2026
m_seki
1
670
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
260
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
140
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
420
Agent Skils
dip_tech
PRO
0
130
マネージャー視点で考えるプロダクトエンジニアの評価 / Evaluating Product Engineers from a Manager's Perspective
hiro_torii
0
190
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
610
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.4k
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
6k
Code Review Best Practice
trishagee
74
20k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Embracing the Ebb and Flow
colly
88
5k
Tell your own story through comics
letsgokoyo
1
810
The Curse of the Amulet
leimatthew05
1
8.7k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Deep Space Network (abreviated)
tonyrice
0
65
Testing 201, or: Great Expectations
jmmastey
46
8.1k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
150
Transcript
Meta AIの Segment Anything Model (SAM) が色々便利そうな話 2023/08/13 Unagi.py 勉強会56枚目
Makoto Koike
お前誰よ 名前:小池 誠 • 崖っぷち大学生(来年卒業できるかな・・・) • 職業経験 ◦ 組込みエンジニア ◦ 機械学習エンジニア
◦ 農業 • 何にPython使ってるの? ◦ 電子工作 circuit python, micro python ◦ 機械学習 scikit-learn, tensorflow, pytorch, polarsなど <最近はメロンの研究やってます> <自動水やり装置作ってます>
今日話すこと • 基盤モデルの登場 • Segment Anything Modelとは • 使い方 •
色々便利そうな予感
基盤モデルの登場 • 大量のデータで学習し様々なタスクに適合可能な大規模モデルが登場した • 2021年スタンフォード大学のWGによって「基盤モデル(Foundation Model)」と命名された 参照: Bommasani,R., Hudson,D., et
al: On the Opportunities and Risks of Foundation Models, arxiv, (2021) <基盤モデルの例> • CLIP • DINO • SAM • BERT • GPT-3/GPT-4 etc…
Segmentation Anything Model(SAM) • Meta AIが開発した画像のセグメンテーションのための基盤モデル • https://segment-anything.com/ • 約1100万枚の画像で学習済み
• Apatch License 2.0で公開
SAMの仕組み 入力:画像 出力:セグメンテーションマ スク + スコア 入力:プロンプト <pretrained ViT> <PE/CLIP>
<Transformer decoder+upsampling MLP> セグメンテーション のやり方にはバラ つきがある ⇒ 3つの候補を出力
使ってみよう 1.Install pip install git+https://github.com/facebookresearch/segment-anything.git 2.model checkpointのダウンロード 3.Getting Started from
segment_anything import SamPredictor, sam_model_registry sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>") predictor = SamPredictor(sam) predictor.set_image(<your_image>) masks, _, _ = predictor.predict(<input_prompts>) 詳しくはgithub参照:https://github.com/facebookresearch/segment-anything
結果
SAM応用の広がり • 基盤モデルは様々なタスクへの適合が可能 SAM SAM-HQ https://github.com/SysCV/sam-hq https://github.com/facebookrese arch/segment-anything Track-Anything https://github.com/gaomingqi/Tra
ck-Anything Track-Anything-HQ https://github.com/jiawen-zhu/HQTrack SAM-Track https://github.com/z-x-yang/Seg ment-and-Track-Anything Video Object Tracking SAM-PT https://github.com/SysCV/sam-pt Various Image segmentation… MedLSAM Anomaly Detecction SAA+ Leaf Only SAM etc…
SAM-PT DEMO
まとめ • SAMを使うと学習することなく高精度なセグメンテーションが可能 • Video Object Trackingが楽にできる ⇒ 植物の動きの解析が捗る!