Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Meta AIのSegment Anything Model (SAM) が色々便利そうな話
Search
Makoto Koike
August 14, 2023
Technology
0
710
Meta AIのSegment Anything Model (SAM) が色々便利そうな話
2023/08/13 Unagi.py勉強会 LT資料
Makoto Koike
August 14, 2023
Tweet
Share
More Decks by Makoto Koike
See All by Makoto Koike
Pythonではじめる農業ロボット開発
koike91
0
1.7k
Pythonで不均衡で一貫性のないデータセットを少しだけマシにする話
koike91
1
2.3k
Other Decks in Technology
See All in Technology
Lazy application authentication with Tailscale
bluehatbrit
0
210
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
2
9.4k
fukabori.fm 出張版: 売上高617億円と高稼働率を陰で支えた社内ツール開発のあれこれ話 / 20250704 Yoshimasa Iwase & Tomoo Morikawa
shift_evolve
PRO
2
7.8k
開発生産性を測る前にやるべきこと - 組織改善の実践 / Before Measuring Dev Productivity
kaonavi
10
4.7k
PO初心者が考えた ”POらしさ”
nb_rady
0
210
Operating Operator
shhnjk
1
590
品質と速度の両立:生成AI時代の品質保証アプローチ
odasho
1
360
American airlines ®️ USA Contact Numbers: Complete 2025 Support Guide
airhelpsupport
0
390
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
130
オーティファイ会社紹介資料 / Autify Company Deck
autifyhq
10
130k
AI専用のリンターを作る #yumemi_patch
bengo4com
5
4.3k
2025-07-06 QGIS初級ハンズオン「はじめてのQGIS」
kou_kita
0
170
Featured
See All Featured
Producing Creativity
orderedlist
PRO
346
40k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Fireside Chat
paigeccino
37
3.5k
Navigating Team Friction
lara
187
15k
Building Adaptive Systems
keathley
43
2.7k
Optimizing for Happiness
mojombo
379
70k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Into the Great Unknown - MozCon
thekraken
40
1.9k
We Have a Design System, Now What?
morganepeng
53
7.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Transcript
Meta AIの Segment Anything Model (SAM) が色々便利そうな話 2023/08/13 Unagi.py 勉強会56枚目
Makoto Koike
お前誰よ 名前:小池 誠 • 崖っぷち大学生(来年卒業できるかな・・・) • 職業経験 ◦ 組込みエンジニア ◦ 機械学習エンジニア
◦ 農業 • 何にPython使ってるの? ◦ 電子工作 circuit python, micro python ◦ 機械学習 scikit-learn, tensorflow, pytorch, polarsなど <最近はメロンの研究やってます> <自動水やり装置作ってます>
今日話すこと • 基盤モデルの登場 • Segment Anything Modelとは • 使い方 •
色々便利そうな予感
基盤モデルの登場 • 大量のデータで学習し様々なタスクに適合可能な大規模モデルが登場した • 2021年スタンフォード大学のWGによって「基盤モデル(Foundation Model)」と命名された 参照: Bommasani,R., Hudson,D., et
al: On the Opportunities and Risks of Foundation Models, arxiv, (2021) <基盤モデルの例> • CLIP • DINO • SAM • BERT • GPT-3/GPT-4 etc…
Segmentation Anything Model(SAM) • Meta AIが開発した画像のセグメンテーションのための基盤モデル • https://segment-anything.com/ • 約1100万枚の画像で学習済み
• Apatch License 2.0で公開
SAMの仕組み 入力:画像 出力:セグメンテーションマ スク + スコア 入力:プロンプト <pretrained ViT> <PE/CLIP>
<Transformer decoder+upsampling MLP> セグメンテーション のやり方にはバラ つきがある ⇒ 3つの候補を出力
使ってみよう 1.Install pip install git+https://github.com/facebookresearch/segment-anything.git 2.model checkpointのダウンロード 3.Getting Started from
segment_anything import SamPredictor, sam_model_registry sam = sam_model_registry["<model_type>"](checkpoint="<path/to/checkpoint>") predictor = SamPredictor(sam) predictor.set_image(<your_image>) masks, _, _ = predictor.predict(<input_prompts>) 詳しくはgithub参照:https://github.com/facebookresearch/segment-anything
結果
SAM応用の広がり • 基盤モデルは様々なタスクへの適合が可能 SAM SAM-HQ https://github.com/SysCV/sam-hq https://github.com/facebookrese arch/segment-anything Track-Anything https://github.com/gaomingqi/Tra
ck-Anything Track-Anything-HQ https://github.com/jiawen-zhu/HQTrack SAM-Track https://github.com/z-x-yang/Seg ment-and-Track-Anything Video Object Tracking SAM-PT https://github.com/SysCV/sam-pt Various Image segmentation… MedLSAM Anomaly Detecction SAA+ Leaf Only SAM etc…
SAM-PT DEMO
まとめ • SAMを使うと学習することなく高精度なセグメンテーションが可能 • Video Object Trackingが楽にできる ⇒ 植物の動きの解析が捗る!