Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
P 値と有意差/分散分析 / P-value, Significant Difference ...
Search
Kenji Saito
PRO
January 03, 2025
Technology
0
120
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬の第9-10回で使用したスライドです。
Kenji Saito
PRO
January 03, 2025
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
We Never Took the Kobayashi Maru Test Until Now. What Do You Think of Our Solutions? — Journeys of the Mind Through a No-Win Game
ks91
PRO
0
12
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
70
ロボットを雰囲気(ヴァイブ)でプログラミングするこどもたち / Children Vibe-Programming Robots
ks91
PRO
0
21
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 3
ks91
PRO
0
30
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 2
ks91
PRO
0
32
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
160
未来へのフォワードキャスト / Forward Cast to the Future
ks91
PRO
0
86
発表と総括 / Presentations and Summary
ks91
PRO
0
61
サイバーフィジカル社会、金融の未来とアイデアソン / Cyber Physical Society, Future of Finance, and Ideathon
ks91
PRO
0
78
Other Decks in Technology
See All in Technology
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
260
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
440
Figma + Storybook + PlaywrightのMCPを使ったフロントエンド開発
yug1224
10
3.6k
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
110
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
8
3.2k
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
1
440
kubellが考える戦略と実行を繋ぐ活用ファーストのデータ分析基盤
kubell_hr
0
130
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
150
退屈なことはDevinにやらせよう〜〜Devin APIを使ったVisual Regression Testの自動追加〜
kawamataryo
4
1.2k
AI時代にPdMとPMMはどう連携すべきか / PdM–PMM-collaboration-in-AI-era
rakus_dev
0
260
役割は変わっても、変わらないもの 〜スクラムマスターからEMへの転身で学んだ信頼構築の本質〜 / How to build trust
shinop
0
160
PRDの正しい使い方 ~AI時代にも効く思考・対話・成長ツールとして~
techtekt
PRO
0
540
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
Producing Creativity
orderedlist
PRO
347
40k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Embracing the Ebb and Flow
colly
87
4.8k
Designing for Performance
lara
610
69k
Git: the NoSQL Database
bkeepers
PRO
431
66k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
The Language of Interfaces
destraynor
160
25k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Transcript
Corporate data analysis — generated by Stable Diffusion XL v1.0
2024 9-10 P (WBS) 2024 9-10 P — 2025-01-06 – p.1/33
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 9-10 P — 2025-01-06 – p.2/33
( ) 1 12 2 • 2 12 2 (B
A ) • 3 12 9 • 4 12 9 • 5 12 16 • 6 12 16 t • 7 12 23 2 ( ) t • 8 12 23 2 ( ) t • 9 1 6 P • 10 1 6 • 11 1 20 12 1 20 13 1 27 14 1 27 W-IOI 2024 9-10 P — 2025-01-06 – p.3/33
( 20 25 ) 1 (20 ) • 2 R
( 55 ) • 3 (32 ) • 4 (14 ) • 5 ( Git) (22 ) • 6 ( ) (24 ) • 7 (1) (25 ) • 8 (2) (25 ) • 9 R ( ) (1) — Welch (17 ) • 10 R ( ) (2) — (21 ) • 11 R ( ) (1) — (15 ) • 12 R ( ) (2) — (19 ) • 13 GPT-4 (19 ) • 14 GPT-4 (29 ) • 15 ( ) LaTeX Overleaf (40 ) • 8 (12/16 ) / (2 ) OK / 2024 9-10 P — 2025-01-06 – p.4/33
( Student µ 95% ) 7 2 t ( t
) 2 ( ) 2 d ( ) ← [ 3] σd 2 t 8 2 t ( t ) 2 ( ) ( ) ← [ 4] σ 2 t 2024 9-10 P — 2025-01-06 – p.5/33
2 2 t 1 9 P P 10 H0 HA
k, N, ¯ ¯ x σ2 ( )MSwithin ( )MSbetween MStotal F F 2024 9-10 P — 2025-01-06 – p.6/33
2024 9-10 P — 2025-01-06 – p.7/33
4. t (1) 2 t (2) 2 t (3) 2025
1 2 ( ) 23:59 JST ( ) Waseda Moodle (Q & A ) (1)(2) Discord 2024 9-10 P — 2025-01-06 – p.8/33
. . . . . . 17 14 (1/3( )
) ( ) → 14 ( ) ( ) → 6 → 3 ( ) → 5 ( ) ( OK) 2 t . . . . . . / . . . ( ) 2024 9-10 P — 2025-01-06 – p.9/33
t t ⇒ ( ) A A xA 2 B
B xB 2 df . . . ⇒ t σ z0.05 . . . ⇒ ( ) t 2024 9-10 P — 2025-01-06 – p.10/33
N (1/2) 2 t 2 2 “ ” 1. 1
2 2. 3. - 2 (n − 1) 4. ÷ ÷ t 5. t (n − 1) t t ⇒ . . . 0 ( ) 2024 9-10 P — 2025-01-06 – p.11/33
N (2/2) 2 t 2 2 1 2 1 2
2 “ ” 1. 2 1 2 2. 3. ( -2) 4. t 1÷ 2 t 5. t (n1 + n2 − 2) t t ⇒ 2024 9-10 P — 2025-01-06 – p.12/33
M ( ) [ 2 t ] 1Day 1Day 1Day
⇒ 2024 9-10 P — 2025-01-06 – p.13/33
K ⇒ . . . 2024 9-10 P — 2025-01-06
– p.14/33
2 t d : µd 0 ( 2 ) :
(1) d d, sd , n, df (2) |d| sd n |t| (3) t0.05 (df) < |t| ( ) R > t.test(sample2, sample1, paired=T) 2024 9-10 P — 2025-01-06 – p.15/33
2 t ( ) 10 ( ) ( ) (
) ( ) ( ) d ( ) d, ( ) sd , ( ) n, ( ) df ( ) t ( ) t ( ) d ( ) sd ( ) n ( ) t df 5% ( ) ( ) ( ) ( ) ( ) 2024 9-10 P — 2025-01-06 – p.16/33
2 t xA xB : µA − µB 0 (
2 ) : (1) xA − xB , sp , nA nB , df (2) |xA − xB | sp nA nB |t| (3) t0.05 (df) < |t| ( ) R > t.test(sample2, sample1, var.equal=T) 2024 9-10 P — 2025-01-06 – p.17/33
2 t ( ) ( ) ( ) ( )
( ) ( ) ( ( ) A B ( ) ) ( ) xA − xB , A B ( ) ( ) sp , ( ) nA nB , ( ) df = nA + nB − 2 ( ) t ( ) t ( ) xA − xB ( ) sp ( ) nA ,nB ( ) t df 5% ( ) ( ) ( ) ( ) ( ) ( ) 2024 9-10 P — 2025-01-06 – p.18/33
K 2 t ( ) ⇒ 2 2024 9-10 P
— 2025-01-06 – p.19/33
N ⇒ (σ) ( σ √n ) ( ) p.121
(standard error) (p.121) (sampling distribution) (p.120) (p.120) ( : ) 2024 9-10 P — 2025-01-06 – p.20/33
K ⇒ . . . AI ( ) . .
. ^^; ( ) 2024 9-10 P — 2025-01-06 – p.21/33
H t 2 Student t t 1 sin(α + β)
= sinαcosβ + cosαsinβ . . . ⇒ 2024 9-10 P — 2025-01-06 – p.22/33
U R ChatGPT ⇒ AI ( ) 2024 9-10 P
— 2025-01-06 – p.23/33
9 P P 2024 9-10 P — 2025-01-06 – p.24/33
α β P P H0 ( ) P 0.05 (P
= 0.015) (P = 0.361) 2024 9-10 P — 2025-01-06 – p.25/33
10 H0 HA k, N, ¯ ¯ x σ2 (
) MSwithin ( )MSbetween MStotal ( SStotal dftotal ) F F 2024 9-10 P — 2025-01-06 – p.26/33
(1/3) k (1) : (2) : σ2 ( ) N(µ,
σ2) µ1 = µ2 = · · · = µk N ( ) ¯ ¯ x ¯ ¯ x = k j=1 nj i=1 xji N (j i N ) 2024 9-10 P — 2025-01-06 – p.27/33
(2/3) ( )MSwithin σ2 MSwithin = SSwithin dfwithin = k
j=1 nj i=1 (xji − ¯ xj )2 N − k ( N− ) ( )MSbetween σ2 MSbetween = SSbetween dfbetween = k j=1 nj (¯ xj − ¯ ¯ x)2 k − 1 ( −1 ) ( H0 σ2 ) 2024 9-10 P — 2025-01-06 – p.28/33
(3/3) MStotal MStotal = SStotal dftotal = k j=1 nj
i=1 (xji − ¯ ¯ x)2 N − 1 ( N − 1 ) : SStotal = SSbetween + SSwithin, dftotal = dfbetween + dfwithin F F = MSbetween MSwithin F0.05 (dfbetween, dfwithin ) < F ( H0 ) 2024 9-10 P — 2025-01-06 – p.29/33
U ( p.227) 20 4 “ U.R” ( anova() )
pp.226–227 2024 9-10 P — 2025-01-06 – p.30/33
2024 9-10 P — 2025-01-06 – p.31/33
5. (1) ( ) (2) 2025 1 16 ( )
23:59 JST ( ) Waseda Moodle (Q & A ) (1)(2) Discord 2024 9-10 P — 2025-01-06 – p.32/33
2024 9-10 P — 2025-01-06 – p.33/33