Basic Operations Basic Manipulations Rendering Inform Making Sense of the Results Example # SVM training results -- good # percent correct / percent incorrect / confusion matrix [100.0, 0.0, [[15.0, 0.0, 0.0], [0.0, 15.0, 0.0], [0.0, 0.0, 15.0]]] # The basic decision tree Angle_feature4x3_12 (<15.000, 15.000, 15.000>) : <=1208958.500 Angle_feature3x2_5 (<8.000, 15.000, 15.000>) # <---- SNIP ----> : >1208958.500 --> wine (<7.000, 0.000, 0.000>) # Tree training results 91 percent correct 9 incorrect # two wines were classified as whiskey, one as a beer # one whiskey was labeled wine [91.11111111111111, 8.88888888888889, [[15.0, 0.0, 0.0], [2.0, 12.0, 1.0], [0.0, 1.0, 14.0]]] ---------------------------------------- # The results on all new data for SVM [77.77777777777779, 22.22222222222222, [[10.0, 0.0, 5.0], [0.0, 10.0, 5.0], [0.0, 0.0, 15.0]]] # The results on all new data for our Tree [80.0, 20.0, [[14.0, 0.0, 1.0], [3.0, 11.0, 1.0], [2.0, 2.0, 11.0]]] Katherine Scott Introduction to SimpleCV