Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析で切り拓け! エンジニアとしてのデータ分析職キャリア戦略
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ksnt
June 27, 2022
Technology
0
960
データ分析で切り拓け! エンジニアとしてのデータ分析職キャリア戦略
オープンセミナー広島2022講演
ksnt
June 27, 2022
Tweet
Share
More Decks by ksnt
See All by ksnt
AutoGenを触ってみた
ksnt
0
320
データ分析者にとってのDjango: StreamlitやDashとの比較
ksnt
1
1.9k
勉強会で発表してみよう!
ksnt
0
310
Kaggleに置かれているデータを 可視化する
ksnt
0
410
CourseraのDigital Transformationというコースを受けてみた
ksnt
2
700
Pythonで挑む計算社会科学
ksnt
0
1.5k
turtleであそぼう!
ksnt
0
290
データ分析と競技プログラミングに使えるPython標準ライブラリ入門
ksnt
1
620
DashユーザーがStreamlitを使ってアプリケーションをつくってみた
ksnt
0
2.2k
Other Decks in Technology
See All in Technology
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
340
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
770
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
240
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
7
2.4k
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
390
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
530
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Odyssey Design
rkendrick25
PRO
1
500
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
57
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
190
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
データ分析で切り拓け! エンジニアとしてのデータ分析職キャリア戦略 オープンセミナー広島 2022 廻船孝行 (Takayuki KAISEN)
[email protected]
自己紹介 - 職業人として • 米シリコンバレーに本社を置くスタートアップ企業のシニアデータアナリスト • 水道管の劣化予測ソフトウェアを開発 • ソフトウェアを用いることで水道工事のコスト削減支援を実現 •
データ分析との長い付き合い • 大学院はシミュレーション(人工生命)の研究室だったが実データの解析に強 い興味(Rを使ったデータ分析: 多変量解析、機械学習) • データサイエンティストという職業の誕生(cf. Data Scientist: The Sexiest Job of the 21st Century, 2012) • 2021年3月より(職業人としての)データアナリストの仕事を開始
自己紹介 - コミュニティ活動 • Pythonとの長い付き合い • 大学院生時(2008年頃?)にPythonを使い始める • PyCon JP
mini、PyCon JP 2011に参加 • PyCon mini Hiroshima 2018で初登壇 • PyCon mini Hiroshima運営スタッフ • PyCon JP 2020ではチュートリアル講師を担当 • コミュニティ活動の恩恵 • データアナリストになるために役立った • PyCon JP 2020で地理データの解析を行いそれを見た(っぽい)リクルー ターから声がかかった
データ分析職の中での私の立ち位置 (1) • 大きく分けて3つの名前(役割名) • データエンジニア、データサイエンティスト、データアナリスト • データエンジニアはデータ基盤をつくる • データサイエンティストはアルゴリズムを開発
• データアナリストは… • 私の所属する会社ではデータアナリストはUS側ではデータエバンジェリストとも呼ばれる • 顧客対応(お客さんと一緒にデータの有効な活用方法を議論、データ分析の結果を報 告) • データの分析(pandas, geopandas, scikit-learn, QGIS)
データ分析職の中での私の立ち位置(2) • データ基盤のない世界 • クライアントからデータを預かってそれを解析し解析結果を報告書と一緒に 納品 • コンサルっぽい?
データ分析 をする人た ちの中での 私の位置 • 様々な役割 • データ基盤構築、(推薦)アルゴリズム開発、(広告)最適化、etc • 可視化と地理データ・位置データ分析
• 「複雑なものを複雑なまま」(複雑系)も有効な場面はあるが、 「複雑なものをシンプルに」も大事 • 複雑なものを分かりやすくするためにはまず可視化 • 多次元のデータを低次元に落とす(PCA, MDS, t-SNE, etc) • 「よく分からないもの」が「分かるようになる」ことの面白さ(学 ぶことの基礎 - 生きるとは、人間とは、この世界とは…)
自分の居場所を探せ! • データ分析職にもいろいろある • 自分が興味がある分野を探すのが大事 • いろいろと手を出してみることも大事 • もがくことで道が出来ていく •
どこに進んでいるのか分からなくても前へ • 誰かが見てくれている • PyCon JPチュートリアルの縁で広島がん高精度放射線治療センターのお仕事の依頼 が来た • 可能であればその進んでいる姿を発信すること • 完成度は低くてよい • スキルより情熱の方が大事 • 実践的にはLinkedinのようなプラットフォームでポートフォリオを公開
どこから 始めれば いいの? (1) • 私ははじめUCI等のオープンデータリポジトリのデー タを触ることから始めた • 楽しくはなかった •
手元で何かやったけど「だから何?」みたいな • Kaggleの登場 • データの宝庫 • コンペだけじゃない(データをクリーニングし たり可視化したりしてノートブックをアップす ると誰かが見てくれて「イイネ」してくれる) • 誰かの役に立っている・誰かに認めてもらえる ことからくるモチベーション • オンラインラーニング • Coursera • ひろしまQuest
どこから 始めれば いいの? (2) • インターネットに技術記事を書くのは怖い • カンファレンスに登壇はちょっと… • 勉強会の存在
• 「すごい広島」(※)「すごい広島 with Python」とい う勉強会 • 自分の学んだことを共有して話し合うことができる • 勉強会での話を基にPyCon JPの登壇者に • 小さく始めて一歩一歩が大事 ※ 毎週水曜日に必ず開かれている勉強会
最後に • キャリアは偶然に左右される • ただし、自分が行きたい方向に行くた めにはできる限りまっすぐ進みたい • コースアウトを減らすためには自分の ことを知ってもらうことが大事 •
データ分析のスキルやアウトプットは 確かに「きっかけ」として重要 • だけど最後は人 • 人との出会いや人からの手助けに感謝 しよう • そうすれば不思議と道は拓かれる