Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metadata Management in Distributed File Systems
Search
UENISHI Kota
December 20, 2023
Technology
2
510
Metadata Management in Distributed File Systems
Database Engineering Meetup #1 LT
https://scalar.connpass.com/event/298887/
UENISHI Kota
December 20, 2023
Tweet
Share
More Decks by UENISHI Kota
See All by UENISHI Kota
Storage Systems in Preferred Networks
kuenishi
0
30
Behind The Scenes: Cloud Native Storage System for AI
kuenishi
2
400
Apache Ozone behind Simulation and AI Industries
kuenishi
0
370
Distributed Deep Learning with Chainer and Hadoop
kuenishi
3
1.2k
A Few Ways to Accelerate Deep Learning
kuenishi
0
1.1k
Introducing Retz
kuenishi
5
1.1k
Introducing Retz and how to develop practical frameworks
kuenishi
3
730
Formalization and Proof of Distributed Systems (ja)
kuenishi
10
6.4k
Mesos Frameworkの作り方 (How to Make Mesos Framework)
kuenishi
7
2.4k
Other Decks in Technology
See All in Technology
Operating Operator
shhnjk
1
590
fukabori.fm 出張版: 売上高617億円と高稼働率を陰で支えた社内ツール開発のあれこれ話 / 20250704 Yoshimasa Iwase & Tomoo Morikawa
shift_evolve
PRO
2
7.8k
面倒な作業はAIにおまかせ。Flutter開発をスマートに効率化
ruideengineer
0
260
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
4
13k
AWS認定を取る中で感じたこと
siromi
1
190
FOSS4G 2025 KANSAI QGISで点群データをいろいろしてみた
kou_kita
0
400
american aa airlines®️ USA Contact Numbers: Complete 2025 Support Guide
aaguide
0
180
データグループにおけるフロントエンド開発
lycorptech_jp
PRO
1
110
CDKTFについてざっくり理解する!!~CloudFormationからCDKTFへ変換するツールも作ってみた~
masakiokuda
1
150
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
130
CRE Camp #1 エンジニアリングを民主化するCREチームでありたい話
mntsq
1
130
Glacierだからってコストあきらめてない? / JAWS Meet Glacier Cost
taishin
1
160
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
43
7.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
How GitHub (no longer) Works
holman
314
140k
Designing Experiences People Love
moore
142
24k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
It's Worth the Effort
3n
185
28k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
GitHub's CSS Performance
jonrohan
1031
460k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Transcript
分散ファイルシステムの メタデータ管理 Database Engineering Meetup LT 2023/12/20 @kuenishi Metadata Management
in Distributed File Systems
分散ファイルシステムとは • 大きなblob をいくらでも置けるシステム ◦ オブジェクトストレージともいう場合がある ◦ POSIX API でアクセスできるかどうかで扱いが異なる場合が多い
• 大きな: 5TB くらいまで • いくらでも (※): ◦ AWS S3: 100 Trillion (2021) ◦ Azure: 4 Trillion (2008) • オンプレの場合 ◦ ストレージノード追加すれば空間を増やせる • ※ AWS: S3 storage now holds over 100 trillion objects ZDNet
ファイルを分割して(分散)保存する 09230843975 ….. 90934045350 ….. …... blob: /bucket/path/to/filename 90934045350 …..
09230843975 ….. ….. …... 90934045350 ….. 09230843975 ….. ….. …... 90934045350 ….. 09230843975 ….. ….. …... host: A host: B host: C
分散ファイルシステムのメタデータ • ファイルの断片をどこにどれだけ置い たか ◦ [file id, offset, length, replica,
host] • ファイルの名前 ◦ [path, file id] ◦ [directory, children] • ファイルの付属情報 ◦ atime, mtime, ctime ◦ owner, group, ACL-ish stuff, ◦ •
メタデータを保存するDBが必要 block10 block11 block12 block134 …. block10 block41 block42 block45
…. block42 block45 block92 block98 …. …. Servers create table buckets (...); create table files (...); create table directories (...); create table blocks (...); create table hosts (...) create table buckets (...); create table files (...); create table directories (...); create table blocks (...); create table hosts (...) create table buckets (...); create table files (...); create table directories (...); create table blocks (...); create table hosts (...)
分散ファイルシステムの評価観点 HPC面 • io500.org • メタデータの読み書き性能 • blobデータの読み書き性能 • (IIRC)
相加平均でスコアリング • POSIX必須 SC23 No.1 (ANL) • blob: 10TiB/sec • meta: 102Mops/sec エンプラ or Web面 • 永続性があるか • 非計画のダウンタイムはどの程度か • 専門家でないエンジニアでも扱えるか • サービスの持続性 • エコシステムやサードパーティ • 必要十分な機能があるか • etc…
GFS, HDFS (Apache Hadoop) • Single replicated master • 独自実装
• ブロック単位の管理 The Google File System (SOSP’03) HDFS Architecture Guide
Lustre • HPCで定番 ◦ 富嶽で採用 • 2000年発表 2003年 1.0リリース •
メタデータ、ブロックともに永続性は個々の ノードのストレージレイヤで保証 • 最近だとOpenZFSが定番らしい • 現代だとDDNやLLIO のようなステージング やキャッシュレイヤを挟んで高速化 • MDSの構造は独自(要調査) Introduction to Lustre Architecture
Ceph • CRUSHという独自のアルゴリズムでブロックをい い感じに重み付けしつつ分散管理できた • ディレクトリツリーは Dynamic Subtree Partitioning •
Inktank起業→RedHat • 多くの国産クラウドサービスでオブジェクトスト レージに使われた実績がある CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data (SC’06) Ceph: a scalable, high-performance distributed file system (OSDI’06)
Gfarm • 数少ない現存する国産の分散ファイルシステム • メタデータ管理はPostgreSQL ◦ 運用でPostgreSQLをいい感じにする • 2001年〜 ペタバイトスケールデータインテンシブ
コンピューティングのた めのGrid Datafarmアーキテクチャ
Apache Ozone (1/2) • HDFSの後継OSS ◦ 最初はSubprojectだったが2019年に独立 • S3 APIとHDFS
API両方喋る • メタデータを分けて別コンポーネントで管理する ことにより、HDFS のNameNodeよりも高いメタ データ性能を目指した • ファイルツリーはOzone Manager • ブロック配置はStorage Container Manager Apache Ozone: Overview
Apache Ozone (2/2) • メタデータはRocksDBに保存 • RocksDBへの更新バッチをRaft (Ratis)でレプリケーション • OMではdouble
buffering をしてスループットを上げている Ozone (Ratis leader) RocksDB Ozone (Ratis follower) RocksDB Ozone (Ratis follower) RocksDB Write Read
Collossus • GFS の後継で現用の分散ファイルシステム • Spannerをメタデータ管理に使っている • エクサバイト置けるらしい Colossus の仕組み:
Google のスケーラブルなスト レージ システムの舞台裏
Others • DAOS ◦ Intel 謹製→OSSとして独立 ◦ OptaneDC向けの最適化が入っている ◦ HLCというのを使ってメタデータ性能を向
上したらしい ◦ io500 No.1 • • • AWS S3 ◦ 言わずとしれたデファクト ◦ In-house something ◦ Range分散するものっぽい ◦ 昔は固定長prefixベースだった模 様 ◦ 100兆オブジェクト