Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
超個体型データセンターにおける群知能クラスタリングの利用構想 / Clustering usi...
Search
kumagallium
April 18, 2019
Research
0
250
超個体型データセンターにおける群知能クラスタリングの利用構想 / Clustering using swarm intelligence for data center like superorganism
kumagallium
April 18, 2019
Tweet
Share
More Decks by kumagallium
See All by kumagallium
ITRCmeet48_MasayaKUMAGAI
kumagallium
0
98
FIT2020_MasayaKUMAGAI
kumagallium
1
200
(長尺版)超個体型データセンターにおける群知能クラスタリングの利用構想 / [Long version] Clustering using swarm intelligence for data center like superorganism
kumagallium
0
2.7k
私の研究のこれまでとこれから2019 / My past research and my future research
kumagallium
0
190
分野横断的思考を活かした機械学習の取り組み〜材料工学×情報工学〜 / Application of cross-disciplinary thinking for machine learning
kumagallium
2
3.1k
疎構造学習およびグラフ畳み込みニューラルネットワークによる異常検知 / Anomaly detection by the method combined with sparse structure learn- ing and graph convolutional neural network
kumagallium
0
2.3k
侵入検知システムのためのグラフ構造に基づいた機械学習および可視化 / Graph Based Machine Learning and Visualization for Intrusion Detection System
kumagallium
0
1.6k
Other Decks in Research
See All in Research
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
430
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
3
1.5k
ミニ四駆AI用制御装置の事例紹介
aks3g
0
180
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
350
ニューラルネットワークの損失地形
joisino
PRO
36
18k
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
260
[2024.08.30] Gemma-Ko, 오픈 언어모델에 한국어 입히기 @ 머신러닝부트캠프2024
beomi
0
800
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
200
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
150
marukotenant01/tenant-20240826
marketing2024
0
520
ダイナミックプライシング とその実例
skmr2348
3
480
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
120
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
405
66k
Designing Experiences People Love
moore
138
23k
Optimizing for Happiness
mojombo
376
70k
Producing Creativity
orderedlist
PRO
341
39k
How to train your dragon (web standard)
notwaldorf
88
5.7k
It's Worth the Effort
3n
183
28k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
Transcript
超個体型データセンターにおける 群知能クラスタリングの利⽤構想 2019年 4⽉18⽇(⽊曜⽇) さくらインターネット研究所 研究員 熊⾕ 将也 ©SAKURA Internet
Inc. q-tech Meeting X "Special Day" @ 石狩
⾃⼰紹介 2 ࢯ໊ ۽୩ ক ࡀ ܦྺ ۀߴઐֶߍ ۀߴઐֶߍ ઐ߈Պ
େࡕେֶେֶӃ ֶݚڀՊ ڥɾΤωϧΪʔֶઐ߈ म࢜՝ఔ େࡕେֶେֶӃ ֶݚڀՊ ڥɾΤωϧΪʔֶઐ߈ ത࢜՝ఔ ͘͞ΒΠϯλʔωοτגࣜձࣾ ݚڀॴ ཧԽֶݚڀॴ "*1ηϯλʔ ֶश ɾ੍ޚֶɿʢतۀɺϩϘίϯ ఔʣ ɾࡐྉֶɿ ɾػցֶशɿ ੍ ޚ ֶ ແ ػ ࡐ ྉ ֶ 5XJUUFS !LVNBHBMMJVN 2JJUB .@,VNBHBJ
これからの研究 3 ݚڀॴͷίϯηϓτɿ ʮݸମܕσʔληϯλʔʯ ݱࡏσʔληϯλʔʹڊେͳίϯϐϡʔςΟϯάϦιʔε͕ଘࡏ͍ͯ͠ ·͕͢ɼࠓޙϨΠςϯγʗηΩϡϦςΟʗίετͷཁ͔݅Βɼ͋Β ΏΔॴࣾձɼ৫ʹίϯϐϡʔςΟϯάϦιʔε༹͕͚ࠐΜͰ͍͘ ͜ͱʹͳΓ·͢ɽ
ͦΕΒࢄͨ͠ίϯϐϡʔςΟϯάϦιʔεɼ୯ಠͰίϯϐϡʔςΟϯ άύϫʔΛఏڙ͢Δʹཹ·ΒͣɼͦͷॴࣾձͷཁٻʹԠͯ͡ɼࣗత ʹɼࢄ͋Δ͍༗ػతʹ݁߹͠ɼݱɾΫϥυͦΕͧΕ͕ॎԣʹ݁ͼ ͍ͭͨϋΠϒϦουߏΛͱΔΑ͏ʹػೳ͠·͢ɽ ͜ͷΑ͏ͳγεςϜʹΑΓ࣮ݱ͞ΕΔͷɼਓʑͷۙʹଘࡏ͠ɼϦΞ ϧλΠϜ͔ͭΠϯςϦδΣϯεʹϢʔβΛࢧ͑ͳ͕Βɼ͔͠͠ಉ࣌ʹόο ΫΤϯυଆ͕༗ػతʹ݁߹͢Δ͜ͱʹΑΓɼ͔ͭͯͳ͍ϚγϯύϫʔͱϦ ιʔεྔΛಈһ͢Δ͜ͱͰݱ࠷ద͔ͭશମ࠷దΛ࣮ݱ͢Δ4VQFS 0SHBOJ[FE8PSMEͰ͢ɽ 1) https://research.sakura.ad.jp/2019/02/22/concept-vision-2019//
これからの研究 4 ݚڀॴͷίϯηϓτɿ ʮݸମܕσʔληϯλʔʯ ݱࡏσʔληϯλʔʹڊେͳίϯϐϡʔςΟϯάϦιʔε͕ଘࡏ͍ͯ͠ ·͕͢ɼࠓޙϨΠςϯγʗηΩϡϦςΟʗίετͷཁ͔݅Βɼ͋Β ΏΔॴࣾձɼ৫ʹίϯϐϡʔςΟϯάϦιʔε༹͕͚ࠐΜͰ͍͘ ͜ͱʹͳΓ·͢ɽ
ͦΕΒࢄͨ͠ίϯϐϡʔςΟϯάϦιʔεɼ୯ಠͰίϯϐϡʔςΟϯ άύϫʔΛఏڙ͢Δʹཹ·ΒͣɼͦͷॴࣾձͷཁٻʹԠͯ͡ɼࣗత ʹɼࢄ͋Δ͍༗ػతʹ݁߹͠ɼݱɾΫϥυͦΕͧΕ͕ॎԣʹ݁ͼ ͍ͭͨϋΠϒϦουߏΛͱΔΑ͏ʹػೳ͠·͢ɽ ͜ͷΑ͏ͳγεςϜʹΑΓ࣮ݱ͞ΕΔͷɼਓʑͷۙʹଘࡏ͠ɼϦΞ ϧλΠϜ͔ͭΠϯςϦδΣϯεʹϢʔβΛࢧ͑ͳ͕Βɼ͔͠͠ಉ࣌ʹόο ΫΤϯυଆ͕༗ػతʹ݁߹͢Δ͜ͱʹΑΓɼ͔ͭͯͳ͍ϚγϯύϫʔͱϦ ιʔεྔΛಈһ͢Δ͜ͱͰݱ࠷ద͔ͭશମ࠷దΛ࣮ݱ͢Δ4VQFS 0SHBOJ[FE8PSMEͰ͢ɽ 1) https://research.sakura.ad.jp/2019/02/22/concept-vision-2019// ϨΠςϯγʗηΩϡϦςΟʗίετͷཁ݅ʹΑΓ େنूத͔Βࢄʹมભ͍ͯ͘͠ ͨͩ͠ɺͨͩͷࢄͰͳ͘ lࣗతʹzࢄ͋Δ͍༗ػతʹ݁߹͠ ϋΠϒϦουߏΛऔΔ ݱ࠷దԽ͔ͭશମ࠷దԽΛ࣮ݱ͠ɺ զʑͷΑΓۙͳଘࡏͱͯ͠ ϦΞϧλΠϜ͔ͭΠϯςϦδΣϯεʹϢʔβΛࢧ͑Δ ະདྷͷσʔληϯλʔͰ͋Δ ˞ࢲͳΓͷղऍ
これからの研究 5 ͦͦݸମͱɼ • ʮଟͷݸମ͔Βܗ͞Εɼ·ΔͰҰͭͷݸମͰ͋Δ͔ͷΑ͏ʹৼΔ͏ ੜͷूஂͷ͜ͱʯ • ʮݶఆతͳೳͱใ͔࣋ͨ͠ͳ͍ݸମ͕ଟू·ͬͯݸମͷೳྗΛ͑ ͨେ͖ͳ͜ͱΛ͛͠Δͷʯ Ͱ͋Δʢ8JLJQFEJBΑΓʣɽ
1) https://ja.wikipedia.org/wiki/超個体 2) http://www.flickr.com/photos/bakkenes/4205012347/ 3) https://fy10119700527i.com/tv/matayoshi-naoki-knowing-the-society-of-ants-3485/ ਤ ϛππϘΞϦͷ ਤ Γௗͷ7ࣈୂྻ
これからの研究 6 ݚڀॴͷίϯηϓτɿ ʮݸମܕσʔληϯλʔʯ ݱࡏσʔληϯλʔʹڊେͳίϯϐϡʔςΟϯάϦιʔε͕ଘࡏ͍ͯ͠ ·͕͢ɼࠓޙϨΠςϯγʗηΩϡϦςΟʗίετͷཁ͔݅Βɼ͋Β ΏΔॴࣾձɼ৫ʹίϯϐϡʔςΟϯάϦιʔε༹͕͚ࠐΜͰ͍͘ ͜ͱʹͳΓ·͢ɽ
ͦΕΒࢄͨ͠ίϯϐϡʔςΟϯάϦιʔεɼ୯ಠͰίϯϐϡʔςΟϯ άύϫʔΛఏڙ͢Δʹཹ·ΒͣɼͦͷॴࣾձͷཁٻʹԠͯ͡ɼࣗత ʹɼࢄ͋Δ͍༗ػతʹ݁߹͠ɼݱɾΫϥυͦΕͧΕ͕ॎԣʹ݁ͼ ͍ͭͨϋΠϒϦουߏΛͱΔΑ͏ʹػೳ͠·͢ɽ ͜ͷΑ͏ͳγεςϜʹΑΓ࣮ݱ͞ΕΔͷɼਓʑͷۙʹଘࡏ͠ɼϦΞ ϧλΠϜ͔ͭΠϯςϦδΣϯεʹϢʔβΛࢧ͑ͳ͕Βɼ͔͠͠ಉ࣌ʹόο ΫΤϯυଆ͕༗ػతʹ݁߹͢Δ͜ͱʹΑΓɼ͔ͭͯͳ͍ϚγϯύϫʔͱϦ ιʔεྔΛಈһ͢Δ͜ͱͰݱ࠷ద͔ͭશମ࠷దΛ࣮ݱ͢Δ4VQFS 0SHBOJ[FE8PSMEͰ͢ɽ 1) https://research.sakura.ad.jp/2019/02/22/concept-vision-2019// ϨΠςϯγʗηΩϡϦςΟʗίετͷཁ݅ʹΑΓ େنूத͔Βࢄʹมભ͍ͯ͘͠ ͨͩ͠ɺͨͩͷࢄͰͳ͘ lࣗతʹzࢄ͋Δ͍༗ػతʹ݁߹͠ ϋΠϒϦουߏΛऔΔ ݱ࠷దԽ͔ͭશମ࠷దԽΛ࣮ݱ͠ɺ զʑͷΑΓۙͳଘࡏͱͯ͠ ϦΞϧλΠϜ͔ͭΠϯςϦδΣϯεʹϢʔβΛࢧ͑Δ ະདྷͷσʔληϯλʔͰ͋Δ ݸମత ˞ࢲͳΓͷղऍ
未来のビジョンと機械学習 8 ϒϩά͔ΒͷҾ༻ ֤ίϯϐϡʔςΟϯάಠཱͨ͠ݸମͱͯ͠ػೳ͠ͳ͕Βɼ૯ମͱͯ͠ ౷͞Ε͍ͯΔΑ͏ʹݟ͑ɼখɾதنσʔληϯλʔ͕ϋϒͱͳͬͯɼ݁ Ռతʹશମ͕͏·͘ܨ͕Εߏ͞Ε͍ͯ͘ɽ 1) https://research.sakura.ad.jp/2019/02/22/concept-vision-2019/ ֤ίϯϐϡʔςΟϯάஞֶ࣍शʹΑΔಈతͳಛϕΫτϧΛܗ͠ͳ͕ ΒɼෳͷΫϥελʹ·ͱΊΒΕ͍ͯΔΑ͏ʹݟ͑ɼʢҎԼུʣɽ
ಛϕΫτϧͷੜ ΫϥελϦϯά ػցֶशతΠϝʔδ ˞ࢲͳΓͷղऍ
クラスタリング⼿法の⽐較 9 1) https://www.antecanis.com/texts/group_04/ ҰൠతͳΫϥελϦϯάख๏ ܈ೳ ,NFBOT ֊ܕ ܭࢉίετ ˓
✕ ˚ վྑੑ ˓ ✕ ˓ ࠶ݱੑ ✕ ˓ ˓ ֊ੑ ✕ ˓ ˓ ೖΕࢠߏ ✕ ˓ ˓ ύϥϝʔλ ˚ ˓ ˚ ͦΕͧΕͷख๏͝ͱʹಘҙෆಘҙ͕͋Δͷͷɺ܈ೳΛ༻͍ͨख๏ ൺֱతଟ͘ͷʹରͯ͠༗ޮͰ͋ΔՄೳੑ͕͋Δɻ ද ΫϥελϦϯάख๏ͷൺֱ
群知能 11 ٜίϩχʔ࠷దԽʢ"$0 ٜͷ࠾ӤߦಈʹணΛಘͨ࠷దԽख๏ɻ ٜϥϯμϜʹͷपΓΛ୳ࡧ͠ɺ໘ʹϑΣϩϞϯΛ͢ɻӤΛݟͭ ͚ΔͱϑΣϩϞϯྔΛิڧ͠ͳ͕ΒʹΔɻଞͷٜϑΣϩϞϯ͕ڧ͍ ಓΛબͼɺϑΣϩϞϯΛ͞Βʹิڧ͢ΔɻҰํɺϑΣϩϞϯৠൃ͢Δͨ Ίɺ༨ܭͳಓফ͑ͯӤ·Ͱͷ࠷ڑ͕ࣗಈతʹબ͞ΕΔɻ https://ja.wikipedia.org/wiki/%E8%9F%BB%E3%82%B3%E3%83%AD%E3%83%8B%E3%83%BC%E6%9C%80%E9%81%A9%E5%8C%96 ܈ೳͱ
ݸମؒͷہॴతͰ؆୯ͳΓऔΓΛ௨͠ɺ ूஂͱͯ͠ߴͳಈ͖Λ͢Δݱ Λ฿ͨ͠ਓೳٕज़
群知能 16 ٜίϩχʔ࠷దԽʢ"$0 ٜͷ࠾ӤߦಈʹணΛಘͨ࠷దԽख๏ɻ ٜϥϯμϜʹͷपΓΛ୳ࡧ͠ɺ໘ʹϑΣϩϞϯΛ͢ɻӤΛݟͭ ͚ΔͱϑΣϩϞϯྔΛิڧ͠ͳ͕ΒʹΔɻଞͷٜϑΣϩϞϯ͕ڧ͍ ಓΛબͼɺϑΣϩϞϯΛ͞Βʹิڧ͢ΔɻҰํɺϑΣϩϞϯৠൃ͢Δͨ Ίɺ༨ܭͳಓফ͑ͯӤ·Ͱͷ࠷ڑ͕ࣗಈతʹબ͞ΕΔɻ https://ja.wikipedia.org/wiki/%E8%9F%BB%E3%82%B3%E3%83%AD%E3%83%8B%E3%83%BC%E6%9C%80%E9%81%A9%E5%8C%96 ܈ೳΛར༻ͨ͠
දతͳΫϥελϦϯάख๏ Λ͝հ
群知能によるクラスタリング 17 ٜίϩχʔΫϥελϦϯάϞσϧʢ"$$.ʣ ٜ͕༮ͷ͚Λ͢Δߦಈʹج͍ͮͨΫϥελϦϯάΞϧΰϦζϜɻ ٜ֮ൣғʹಉ͡छྨͷ༮͕ଘࡏ͢Δ߹ʹԼΖ͢࡞ۀΛ܁Γฦ ͢ɻͦΕʹΑΓɺখ͞ͳΫϥελॖখɺফ໓͠ɺେ͖ͳΫϥελΑΓ େ͖ͳͷʹ͢Δɻ र͏ ஔ͘ र͏
群知能とデータマイニング:アジス・アブラハム 他、東京電機大学出版局、2012年 ΤʔδΣϯτʢٜʣΛา͔ͤ ࠷దͳΫϥελΛͭ͘ΒͤΔ
群知能によるクラスタリング 18 ٜίϩχʔΫϥελϦϯάϞσϧʢ"$$.ʣ ٜ͕༮ͷ͚Λ͢Δߦಈʹج͍ͮͨΫϥελϦϯάΞϧΰϦζϜɻ ٜ֮ൣғʹಉ͡छྨͷ༮͕ଘࡏ͢Δ߹ʹԼΖ͢࡞ۀΛ܁Γฦ ͢ɻͦΕʹΑΓɺখ͞ͳΫϥελॖখɺফ໓͠ɺେ͖ͳΫϥελΑΓ େ͖ͳͷʹ͢Δɻ र͏ ஔ͘ र͏
群知能とデータマイニング:アジス・アブラハム 他、東京電機大学出版局、2012年
群知能によるクラスタリング 20 ཻࢠ܈࠷దԽ๏ʢ140 'MPDLΞϧΰϦζϜ ௗͳͲͷ܈Εͷಈ͖Λ฿ͨ͠ΞϧΰϦζϜɻ ಉछͰͳ͍܈Ε͔ΒΕɺಉछͷ܈Εͷۙ͘ʹΛ߹Θͤͯཹ· ΔɻͦΕʹΑΓɺछྨผͷΫϥελϦϯά͕ߦΘΕΔɻ 群知能とデータマイニング:アジス・アブラハム 他、東京電機大学出版局、2012年
িಥճආˠඇྨࣅϊʔυͷࢄ ௐ 'MPDLΫϥελϦϯάˠྨࣅϊʔυͷूத িಥճආ 'MPDL ΫϥελϦϯά ݸମʢௗʣͦͷͷ͕ ࠷దͳΫϥελΛࣗൃతʹܗ͢Δ
群知能によるクラスタリング 21 ཻࢠ܈࠷దԽ๏ʢ140 'MPDLΞϧΰϦζϜ ௗͳͲͷ܈Εͷಈ͖Λ฿ͨ͠ΞϧΰϦζϜɻ ಉछͰͳ͍܈Ε͔ΒΕɺಉछͷ܈Εͷۙ͘ʹΛ߹Θͤͯཹ· ΔɻͦΕʹΑΓɺछྨผͷΫϥελϦϯά͕ߦΘΕΔɻ 群知能とデータマイニング:アジス・アブラハム 他、東京電機大学出版局、2012年
িಥճආˠඇྨࣅϊʔυͷࢄ ௐ 'MPDLΫϥελϦϯάˠྨࣅϊʔυͷूத িಥճආ 'MPDL ΫϥελϦϯά
群知能 22 ٜίϩχʔ࠷దԽʢ"$0 ٜͷ࠾ӤߦಈʹணΛಘͨ࠷దԽख๏ɻ ٜϥϯμϜʹͷपΓΛ୳ࡧ͠ɺ໘ʹϑΣϩϞϯΛ͢ɻӤΛݟͭ ͚ΔͱϑΣϩϞϯྔΛิڧ͠ͳ͕ΒʹΔɻଞͷٜϑΣϩϞϯ͕ڧ͍ ಓΛબͼɺϑΣϩϞϯΛ͞Βʹิڧ͢ΔɻҰํɺϑΣϩϞϯৠൃ͢Δͨ Ίɺ༨ܭͳಓফ͑ͯӤ·Ͱͷ࠷ڑ͕ࣗಈతʹબ͞ΕΔɻ https://ja.wikipedia.org/wiki/%E8%9F%BB%E3%82%B3%E3%83%AD%E3%83%8B%E3%83%BC%E6%9C%80%E9%81%A9%E5%8C%96 ΫϥελϦϯάͯ͠
݁ہԿΛ͢Δ͔
応⽤アイデア 23 Ԡ༻ΞΠσΞ ϝτϦοΫͳͲΛར༻ͨ͠ಛϕΫτϧ ˠྨࣅ༻్Ϋϥελʹجͮ͘ҟৗݕɾ༧ ௨৴ස௨৴༰Λར༻ͨ͠ಛϕΫτϧ ˠϧʔςΟϯάͷॖɼʢΩϟογϡʣαʔόͷ࠷దஔ
ཧతҐஔΛར༻ͨ͠ಛϕΫτϧ ˠՄൖܕαʔόɺσʔληϯλʔͷ࠷దஔ 8FCαʔό ҟৗ ҙใ ࣌ؒ ҟৗݕ ҟৗ༧
まとめ 24 • ίϯϐϡʔςΟϯάϦιʔε͕ࣗతʹࢄɾूதߏΛͱΓɺ༗ػతʹ ࠷దԽ͢ΔݸମܕσʔληϯλʔΛ࣮ݱ͍ͨ͠ • ʮಛϕΫτϧͷੜʯͱʮΫϥελϦϯάʯʹ Ϗδϣϯͱํੑ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ •
Ϋϥελʔ͔Βͷ֎Εݕ • ಉҰΫϥελʔͷҟৗΛڞ༗ɺҙใൃྩʢҟৗ༧ʹͭͳ͕Δʁʣ • ܦ࿏ͷ࠷దԽʢΩϟογϡʣαʔό࠷దஔ • Մൖܕσʔληϯλʔͷ࠷దஔ ܈ೳΫϥελϦϯά ߟ͑ΒΕΔԠ༻ྫ • ҰൠతͳΫϥελϦϯάख๏ΑΓଟ͘ͷ໘Ͱ༗ޮͰ͋ΔՄೳੑ • ΤʔδΣϯτͷ༗ແͰख๏͕ͭʹେผ͞ΕΔ