Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
侵入検知システムのためのグラフ構造に基づいた機械学習および可視化 / Graph Bas...
Search
kumagallium
March 08, 2019
Research
0
1.7k
侵入検知システムのためのグラフ構造に基づいた機械学習および可視化 / Graph Based Machine Learning and Visualization for Intrusion Detection System
第44回インターネットと運用技術研究発表会
https://www.iot.ipsj.or.jp/meeting/44-program/
kumagallium
March 08, 2019
Tweet
Share
More Decks by kumagallium
See All by kumagallium
ITRCmeet48_MasayaKUMAGAI
kumagallium
0
110
FIT2020_MasayaKUMAGAI
kumagallium
1
210
(長尺版)超個体型データセンターにおける群知能クラスタリングの利用構想 / [Long version] Clustering using swarm intelligence for data center like superorganism
kumagallium
0
3k
超個体型データセンターにおける群知能クラスタリングの利用構想 / Clustering using swarm intelligence for data center like superorganism
kumagallium
0
330
私の研究のこれまでとこれから2019 / My past research and my future research
kumagallium
1
220
分野横断的思考を活かした機械学習の取り組み〜材料工学×情報工学〜 / Application of cross-disciplinary thinking for machine learning
kumagallium
2
3.3k
疎構造学習およびグラフ畳み込みニューラルネットワークによる異常検知 / Anomaly detection by the method combined with sparse structure learn- ing and graph convolutional neural network
kumagallium
0
2.5k
Other Decks in Research
See All in Research
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
1.5k
20250624_熊本経済同友会6月例会講演
trafficbrain
1
610
数理最適化に基づく制御
mickey_kubo
6
730
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
180
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
110
最適化と機械学習による問題解決
mickey_kubo
0
170
Submeter-level land cover mapping of Japan
satai
3
290
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
170
IMC の細かすぎる話 2025
smly
2
630
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
190
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Designing Experiences People Love
moore
142
24k
Raft: Consensus for Rubyists
vanstee
140
7.1k
A Modern Web Designer's Workflow
chriscoyier
696
190k
A Tale of Four Properties
chriscoyier
160
23k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
3 3 9 2 0 4 -78 -78 8 1
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄɿڭࢣ͋Γֶशܕ ·ͱΊ
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄɿڭࢣ͋Γֶशܕ ·ͱΊ
ਤ μʔΫωοτʹ͓͚Δؒ૯؍ଌύέοτ ԯԯԯ ԯ ԯ ԯ ԯ ԯ
ԯ ԯ ԯ ਤ Πϯλʔωοτʹଓ͕Մೳͳػثٴͼηϯαʔ ωοτϫʔΫͷͱͯ͠ΘΕΔͷ ૯লใ௨৴നॻɿIUUQXXXTPVNVHPKQNFOV@TFJTBLVIBLVTZPJOEFYIUNM /*$5&3؍ଌϨϙʔτɿ IUUQTXXXOJDUHPKQDZCFSSFQPSU/*$5&3@SFQPSU@QEG զʑ͕ීஈར༻͢ΔΠϯλʔωοτɼεϚϗ*P5σόΠεͷٸͳීٴ ʹ͍ɼࠓ͔ܽ͢͜ͱ͕Ͱ͖ͳ͍ࣾձج൫ͱͳ͍ͬͯΔɽͱ͜Ζ͕ɼαΠό ʔ߈ܸͷڴҖʑ૿Ճ͍ͯ͠ΔɽͦͷͨΊɼαΠόʔ߈ܸରࡦͷඞཁੑ͕ߴ ·͖͍ͬͯͯΔɽ
α Π ό ʔ ߈ ܸ ର ࡦ
ͷ ̍ ͭ ͱ ͠ ͯ ɼ ෆ ਖ਼ ͳ ௨ ৴ Λ ݕ ͢ Δ ৵ೖݕγεςϜ *%4 *OUSVTJPO %FUFDUJPO 4ZTUFN ͕ଘࡏ͢Δɽ ಛʹ࠷ۙͰɼػցֶशܕ*%4ͷݚڀ͕ΜʹߦΘΕ͍ͯΔɽ ͦΕͧΕҟͳΔརΛ༗͍ͯ͠Δ ڭࢣ͋Γֶशܕ ϥϕϧͷ͍ͭͨڭࢣσʔλΛֶश͢ Δख๏ • Lۙ๏ • χϡʔϥϧωοτϫʔΫ ͳͲ ਖ਼ৗσʔλ ҟৗσʔλ ֶश Ϟσϧ ৽نσʔλ Ϟσϧ طͷ߈ܸʹ༗ޮ σʔλͷେଟਖ਼ৗͰ͋ΔͱԾఆͯ͠ɼ ਖ਼ৗσʔλͷΈΛֶश͢Δख๏ • LNFBOT๏ • 0OFDMBTT47. ͳͲ ڭࢣͳֶ͠शܕ ະͷ߈ܸʹ༗ޮ ֶश ৽نσʔλ ਖ਼ৗσʔλ ਖ਼ৗϞσϧ ਖ਼ৗϞσϧ
ҟৗݕ τϥϑΟοΫ ݕূ ରॲ ͲΜͳҟৗʁ ຊʹҟৗʁ ਖ਼ৗҟৗ
ҟৗͷछྨ ख๏ ༧ଌਫ਼ ֶशର จݙ χϡʔϥϧωοτϫʔΫ ਖ਼ৗҟৗ αϙʔτϕΫλʔϚγϯ ਖ਼ৗҟৗ -45. ҟৗͷछྨʢछʣ ϕΠδΞϯωοτϫʔΫ ҟৗͷछྨʢछʣ ද ػցֶशܕ*%4ͷઌߦݚڀͷྫ ͢Ͱʹߴ͍༧ଌਫ਼͕ใࠂ͕ଘࡏ ଟ͘ͷ࣌ؒΛඅ͢ 4.VLLBNBMB FUBM 5SBJOJOH +,JNFUBM ``JO1SPD*OU$POG1MBUGPSN5FDIOPM4FSWJDF r 4$IFCSPMV FUBM $PNQVUFST4FDVSJUZ ݕূʹଟ͘ͷ࣌ؒΛඅ͢͜ͱΛආ͚ΔͨΊɼݕূͷॿ͚ʹͳΔஅࡐྉͷఏ ڙ͕ඞཁͰ͋Δɽ
ը૾ॲཧͷͰɼೖྗը૾ͷͲͷ෦͕ॏཁͰ͋Δ͔Λఆྔత͓Αͼ ͦΕʹج͍ͮͨՄࢹԽʹΑͬͯఆ݁ՌΛઆ໌͢Δख๏͕͢ͰʹఏҊ͞Ε͍ͯΔ ਤ ఆ݁ՌͷՄࢹԽʹΑΔઆ໌ΛՄೳʹͨ͠ઌߦݚڀ .3JCFJSP 44JOHIBOE$(VFTUSJO *O1SPDFFEJOHTPGUIFOE"$.4*(,%%*OUFS
OBUJPOBM$POGFSFODFPO,OPXMFEHF%JTDPWFSZBOE %BUB.JOJOH ,%% 3'POH "7FEBMEJ *O1SPDFFEJOHTPG1SPDFFEJOHTPGUIF*&&&*OUFSOBUJPOBM$POGFSFODFPO$PNQVUFS7JTJPO *$$7 ਤ ఆ݁ՌͷՄࢹԽʹΑΔઆ໌ΛՄೳʹͨ͠ઌߦݚڀ
ը૾ॲཧͷͰɼೖྗը૾ͷͲͷ෦͕ॏཁͰ͋Δ͔Λఆྔత͓Αͼ ͦΕʹج͍ͮͨՄࢹԽʹΑͬͯఆ݁ՌΛઆ໌͢Δख๏͕͢ͰʹఏҊ͞Ε͍ͯΔ ਤ ఆ݁ՌͷՄࢹԽʹΑΔઆ໌ΛՄೳʹͨ͠ઌߦݚڀ .3JCFJSP 44JOHIBOE$(VFTUSJO *O1SPDFFEJOHTPGUIFOE"$.4*(,%%*OUFS
OBUJPOBM$POGFSFODFPO,OPXMFEHF %JTDPWFSZBOE%BUB.JOJOH ,%% 3'POH "7FEBMEJ *O1SPDFFEJOHTPG1SPDFFEJOHTPGUIF*&&&*OUFSOBUJPOBM$POGFSFODFPO$PNQVUFS7JTJPO *$$7 ਤ ఆ݁ՌͷՄࢹԽʹΑΔઆ໌ΛՄೳʹͨ͠ઌߦݚڀ *%4ʹ͓͍ͯɼ τϥϑΟοΫͷͲͷཁૉ͕ݕ݁Ռʹରͯ͠Өڹ͍͔ͯͨ͠ Λ ఆྔతʹج͍ͮͨՄࢹԽʹΑͬͯઆ໌ Ͱ͖Εɼݕূͷॿ͚ͱͳΔ
DARPA 1998 Dataset
*1 5$1 )551 4:/ "$, ྫʣ ֤ϑΟʔϧυใɼϓϩτίϧʹैͬͨ࣌ܥྻతڍಈΛࣔ͢ɽ 4ZO 4ZO "DL "DL ྫ ΣΠϋϯυγΣΠΫ τϥϑΟοΫσʔλΛෳͷཁૉͱͦΕΒͷؔੑΛײతʹཧղͰ͖Δ άϥϑߏͰදݱ͢Δ͜ͱʹணͨ͠ɽ ҎԼͷఆٛʹΑΓɼτϥϑΟοΫΛάϥϑߏԽ͢Δɽ ϊʔυɿϑΟʔϧυใ ΤοδɿϑΟʔϧυใͷ࣌ܥྻతڍಈͷ૬ؔ άϥϑߏԽ
*1
5$1 )551 4:/ "$, 4ZO 4ZO "DL "DL 4ZO 4ZO "DL *1 5$1 )551 4:/ "$, ૬ؔؔͷ่Ε ڭࢣͳֶ͠श ˠ ҟৗ ˠ ਖ਼ৗ άϥϑߏԽ ྫʣ ϥϕϧͷ༩ ڭࢣ͋Γֶश τϥϑΟοΫͷάϥϑߏԽΛར༻͠ɼఆྔతʹج͍ͮͨՄࢹԽʹΑ ͬͯݕ݁Ռʢҟৗʣͷઆ໌͕Ͱ͖Δػցֶशܕ*%4ͷ࣮ݱΛతͱ͢Δɽ छྨͷػցֶशख๏ ՄࢹԽͷྫʣ ϊʔυ ෦άϥϑ
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄɿڭࢣ͋Γֶशܕ ·ͱΊ
ఏҊख๏ᶄ ڭࢣ͋Γֶशܕ %"31" ෳͷ࣌ܥྻಛྔΛநग़ ରࠩܥྻσʔλͷม ඪ४Խ ૄߏֶशʢ(SBQIJDBM-BTTPʣ
άϥϑͷ่Ε άϥϑΈࠐΈ // ఏҊख๏ᶃ ڭࢣͳֶ͠शܕ άϥϑߏԽͨ͠τϥϑΟοΫσʔλʹج͍ͮͨ̎छྨͷػցֶशख๏Λ ར༻ͨ͠*%4ΛఏҊ͢Δɽ લॲཧ σʔληοτ άϥϑߏԽ ఏҊख๏ᶃɼᶄ
ि ༵ ߈໊ܸ ࣌ؒ ݄ GPSNBU
݄ GGC Ր MPBENPEVMF ʜ ʜ ʜ ʜ ۚ OFQUVOF ۚ TNVSG ۚ OFQUVOF ۚ CBDL ද %"31"%BUBTFUͷ߈ܸใ ఏҊख๏Ͱɼϥϕϧ͕༩͞ΕͨύέοτΩϟϓνϟܕͷτϥϑΟοΫ͕ ඞཁͰ͋ΔͨΊɼ%"31"Λ༻ͨ͠ɽຊσʔληοτɼԾతʹߏங ͨ͠ωοτϫʔΫͷ߈ܸΛఆͨ͠ͱ͖ͷ5DQEVNQσʔλ͓Αͼ߈ܸใΛ ఏڙ͍ͯ͠Δɽ 4:/GMPPE 4NVSG %"31"σʔληοτ dि ͷ͏ͪɼ िͷ༵ۚͷσʔλΛ༻ͨ͠ 4ZO 4ZO "DL QJOH
ఏҊख๏ᶃ ڭࢣͳֶ͠शܕ छྨͷ࣌ܥྻಛྔʹղ ରࠩ ࠩ %"31" ෳͷ࣌ܥྻಛྔΛநग़
ରࠩܥྻσʔλͷม ඪ४Խ ૄߏֶशʢ(SBQIJDBM-BTTPʣ άϥϑͷ่Ε άϥϑΈࠐΈ // ఏҊख๏ᶄ ڭࢣ͋Γֶशܕ
ʜ ʜ %"31" ෳͷ࣌ܥྻಛྔΛநग़ ରࠩܥྻσʔλͷม ඪ४Խ ૄߏֶशʢ(SBQIJDBM-BTTPʣ ΟϯυαΠζ
ຊݚڀͰɼ-੍͖ͷૄߏֶशख ๏Ͱ͋Δ(SBQIJDBM-BTTPΛར༻͠ɼͷ ΟϯυαΠζͰάϥϑߏԽͨ͠ɽ ఏҊख๏ᶃ ڭࢣͳֶ͠शܕ άϥϑͷ่Ε άϥϑΈࠐΈ // ఏҊख๏ᶄ ڭࢣ͋Γֶशܕ
ʜ ʜ ૄߏֶशʢ(SBQIJDBM-BTTPʣ άϥϑͷ่Ε ఏҊख๏ᶃ ڭࢣͳֶ͠शܕ ਖ਼ৗάϥϑ άϥϑO άϥϑN
ҟৗɿਖ਼ৗͳ૬ؔάϥϑ͕ͲΕ่͚ͩΕ͔ͨ ʜ ʜ ΟϯυαΠζ %"31" ෳͷ࣌ܥྻಛྔΛநग़ ରࠩܥྻσʔλͷม ඪ४Խ άϥϑΈࠐΈ // ఏҊख๏ᶄ ڭࢣ͋Γֶशܕ 5*EF "$-P[BOP /"CFBOE:-JV1SPYJNJUZ CBTFE"OPNBMZ%FUFDUJPOVTJOH4QBSTF4USVDUVSF-FBSO JOH *O1SPDFFEJOHTPG *&&&*OUFSOBUJPOBM$PO GFSFODF PO"DPVTUJDT 4QFFDIBOE4JHOBM1SPDFTTJOH *$"441 ˞άϥϑߏͷఆٛ෦ʹಠࣗੑ͋Δ͕ɼάϥ ϑߏͷ่ΕʹΑΔҟৗݕɼҪखΒ ͕ఏҊ ͨ͠ख๏Λར༻͍ͯ͠Δɽ
ʜ ʜ ΟϯυαΠζ ఏҊख๏ᶄ ڭࢣ͋Γֶशܕ
ग़ྗ: ʢਖ਼ৗҟৗʣ ྨ 1PPMJOH 'JOHFSQSJOU 1PPMJOH 'JOHFSQSJOU ̍ۙ ۙ ʜ ʜ // ˎ 8 ˎ 8 ˎ 8 $POW $POW ˎ 8 ˎ 8 ˎ 8 ೖྗ ૄߏֶशʢ(SBQIJDBM-BTTPʣ άϥϑΈࠐΈ // %"31" ෳͷ࣌ܥྻಛྔΛநग़ ରࠩܥྻσʔλͷม ඪ४Խ ఏҊख๏ᶃ ڭࢣͳֶ͠शܕ άϥϑͷ่Ε άϥϑΈࠐΈχϡʔϥϧωοτϫʔΫ 'JOHFSQSJOUɿ ࠷େۙɿ ӅΕαΠζɿ όοναΠζɿ ΤϙοΫɿ σʔλͷׂ߹ʢ܇࿅ɿݕূʣɿ70:30 ($//ͷֶशύϥϝʔλ
άϥϑΈࠐΈχϡʔϥϧωοτϫʔΫʢ($//ʣ IUUQTMJCSBSZOBJTUKQNZMJNFEJPEMMJNFEJPTIPXQEGDHJ%-1%'3@1 $//ͷ߹ ($//ͷ߹ $//ͷ߹ɼݩը૾ͱϑΟϧλʔͱͷΈࠐΈԋࢉʹΑΓɼಛఆըૉͱपΓ ͷըૉͱͷؔੑʢಛʣΛ࣍ͷͱ͢ɽ($//ɼϊʔυʹΑͬͯۙϊ ʔυͷҟͳΔ͕ɼ$//ͱಉ༷ʹϊʔυͱͦͷपΓͷϊʔυͱͷؔੑΛ ΈࠐΈԋࢉʹΑΓ࣍ͷͱ͢ɽ
ਤ άϥϑΈࠐΈχϡʔϥϧωοτϫʔΫͷུ֓ਤ͓Αͼάϥϑදݱ ਤ ΈࠐΈԋࢉͷྫ͓Αͼάϥϑදݱ ग़ྗ: ʢਖ਼ৗҟৗʣ ྨ 1PPMJOH 'JOHFSQSJOU 1PPMJOH 'JOHFSQSJOU ̍ۙ ۙ ʜ ʜ // ˎ 8 ˎ 8 ˎ 8 $POW $POW ˎ 8 ˎ 8 ˎ 8 ೖྗ ݩը૾ ϑΟϧλʔ I I I I
άϥϑΈࠐΈχϡʔϥϧωοτϫʔΫʢ($//ʣ %BWJE%VWFOBVE FUBM *OUIF1SPD/*14 .POUSFBM $BOBEB %FDFNFCFS
ຊݚڀͰɼ($//ͷதͰ/'1 /FVSBM 'JOHFS 1SJOUΛར༻͢Δɽઌߦݚڀ ͰɼಟੑͳͲͷߴਫ਼ͳ༧ଌʹޭ͠ɼ'JOHFS 1SJOUͷੜʹޭͨ͠ɽ 'JOHFS 1SJOUɼೖྗͨ͠άϥϑߏΛ࣍ݩϕΫτϧͰදݱͨ͠ͷͰ͋Δɽ ֤Ϗοτ͕෦άϥϑʹ૬͠ɼ͕݁Ռʢಟੑʣʹର͢ΔӨڹ ʹ૬͢Δɽ ਤ ಟੑΛ༧ଌ͢ΔͨΊʹ࠷దԽ͞Εͨ'JOHFS1SJOUͷՄࢹԽ ग़ྗ: ʢਖ਼ৗҟৗʣ ྨ 1PPMJOH 'JOHFSQSJOU 1PPMJOH 'JOHFSQSJOU ̍ۙ ۙ ʜ ʜ // ˎ 8 ˎ 8 ˎ 8 $POW $POW ˎ 8 ˎ 8 ˎ 8 ೖྗ ಟ ੑ ʜ ˞ਖ਼֬ʹɼͰͳ͘d·Ͱͷ 'JOHFS1SJOU ਤ /'1ͷωοτϫʔΫུ֓ਤ
άϥϑΈࠐΈχϡʔϥϧωοτϫʔΫʢ($//ʣ %BWJE%VWFOBVE FUBM *OUIF1SPD/*14 .POUSFBM $BOBEB %FDFNFCFS
ຊݚڀͰɼ($//ͷதͰ/'1 /FVSBM 'JOHFS 1SJOUΛར༻͢Δɽઌߦݚڀ ͰɼಟੑͳͲͷߴਫ਼ͳ༧ଌʹޭ͠ɼ'JOHFS 1SJOUͷੜʹޭͨ͠ɽ 'JOHFS 1SJOUɼೖྗͨ͠άϥϑߏΛ࣍ݩϕΫτϧͰදݱͨ͠ͷͰ͋Δɽ ֤Ϗοτ͕෦άϥϑʹ૬͠ɼ͕݁Ռʢಟੑʣʹର͢ΔӨڹ ʹ૬͢Δɽ ਤ ಟੑΛ༧ଌ͢ΔͨΊʹ࠷దԽ͞Εͨ'JOHFS1SJOUͷՄࢹԽ ग़ྗ: ʢਖ਼ৗҟৗʣ ྨ 1PPMJOH 'JOHFSQSJOU 1PPMJOH 'JOHFSQSJOU ̍ۙ ۙ ʜ ʜ // ˎ 8 ˎ 8 ˎ 8 $POW $POW ˎ 8 ˎ 8 ˎ 8 ೖྗ ಟ ੑ ʜ ˞ਖ਼֬ʹɼͰͳ͘d·Ͱͷ 'JOHFS1SJOU ਤ /'1ͷωοτϫʔΫུ֓ਤ άϥϑԽͨ͠τϥϑΟοΫσʔλΛ($//Ͱֶश͢Δ͜ͱʹΑΓɼ ݕ݁ՌʢҟৗʣΛઆ໌Ͱ͖Δ෦άϥϑͷՄࢹԽ͕Ͱ͖Δͱߟ͑ΒΕΔɽ
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄɿڭࢣ͋Γֶशܕ ·ͱΊ
τϥϑΟοΫσʔλͷάϥϑԽ छྨͷ࣌ܥྻಛྔʹ- ੍͖ͷૄߏֶशख๏(SBQIJDBM -BTTPΛద ༻ͨ݁͠Ռɼૄͳ૬ؔؔͷάϥϑߏ͕ಘΒΕΔ͜ͱΛ֬ೝͨ͠ɽ ૄͳάϥϑߏʹ͢Δ͜ͱʹΑΓɼใྔͷѹॖϊΠζͷؤڧੑʹ༗ޮͰ ͋Δͱߟ͑ΒΕΔɽ (SBQIJDBM-BTTP ਤ
τϥϑΟοΫσʔλ͔Β࡞ͨ͠άϥϑߏ(SBQIJDBM-BTTPͷద༻લ͓Αͼ ద༻ޙ
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄɿڭࢣ͋Γֶशܕ ·ͱΊ
ਖ਼ৗঢ়ଶͷάϥϑߏ άϥϑͷ࣌ܥྻ ҟৗɿਖ਼ৗͳ૬͕ؔͲͷఔ่Ε͔ͨ ਖ਼ৗঢ়ଶͱԾఆͨ͠୯Ұͷάϥϑߏͱάϥϑͷ࣌ܥྻσʔλͱͷҧ͍Λҟ ৗͱ͠ɼΧϧόοΫɾϥΠϒϥʔڑʹΑͬͯܭࢉΛߦͬͨ ࣌ؒU
࣌ؒU ҟৗ E 4SD*1 5$1
ਤ %"31"ͷਖ਼ղσʔλ͓Αͼ֤࣌ܥྻಛྔ ͱఏҊख๏ ʹΑͬͯݕͨ͠ҟৗͷՄࢹԽ݁Ռ ҟৗɿ 5$1
)551ɼ4:/ɼ ൪ϙʔτʹର͢Δ4:/qPPE߈ܸ ҟৗ̎ɿ 4SD*1 *$.1ɼ ෳૹ৴ݩ*1͔Β ͭͷૹ৴ઌ*1ʹ ରͯ͠ߦΘΕͨ4NVSG߈ܸ ҟৗ̎ ҟৗ̍ 4ZO 4ZO "DL QJOH
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄɿڭࢣ͋Γֶशܕ ·ͱΊ
ਖ਼ղσʔλ ༧ଌ݁Ռ άϥϑߏԽͨ͠τϥϑΟοΫσʔλΛ($//Ͱֶशͨ݁͠Ռɼ༧ଌਫ਼͕ ͱͳͬͨɽ͜ͷઌߦݚڀͰใࠂ͞Ε͍ͯΔͱಉఔʹߴ͍Ͱ͋Δɽ ਤ ਖ਼ղσʔλ͓ΑͼֶशϞσϧʹΑΔ༧ଌ݁Ռ
ख๏ ༧ଌਫ਼ จݙ χϡʔϥϧωοτϫʔΫ αϙʔτϕΫλʔϚγϯ -45. ϕΠδΞϯωοτϫʔΫ ද ػցֶशܕ*%4ͷઌߦݚڀͷྫ 4.VLLBNBMB FUBM 5SBJOJOH +,JNFUBM ``JO1SPD*OU$POG1MBUGPSN5FDIOPM4FSWJDF r 4$IFCSPMV FUBM $PNQVUFST4FDVSJUZ
($//Ͱֶशͨ͠ϞσϧΛར༻͠ɼ'JOHFS 1SJOUͷऔಘʹޭͨ͠ɽ 4:/GMPPE߈ܸ࣌ɼҟৗ͕ݕ͞Εɼ'JOHFS 1SJOUͰߴ͍ӨڹΛࣔ͢෦ άϥϑɼ)551ͱ4:/ͷ૬ؔؔʹؔ࿈͢ΔͷͰ͋ͬͨɽ (a)
(b) ਤ 'JOHFSQSJOU͓ΑͼҟৗͷཁҼͱͳͬͨ෦άϥϑͷҰྫ4:/GMPPE߈ܸ ෦άϥϑ 'JOHFS1SJOU Өڹ
4NVSG߈ܸ࣌ɼ'JOHFS1SJOUͷӨڹͷߴ͍෦άϥϑɼૹ৴ݩ*1͓Αͼ *$.1ͷ૬ؔؔʹؔ࿈͢ΔͷͰ͋ͬͨɽ ఏҊख๏ᶄͰϊʔυؒͷ૬ؔؔʢ෦άϥϑʣͷՄࢹԽͰ͖ΔͨΊɼϊ ʔυͷՄࢹԽͷΈͰ͋ͬͨఏҊख๏ᶃΑΓ۩ମతͳઆ໌ੑ͕ظͰ͖Δɽ (b) ਤ
'JOHFSQSJOU͓ΑͼҟৗͷཁҼͱͳͬͨ෦άϥϑͷҰྫ4:/GMPPE߈ܸ ෦άϥϑ 'JOHFS1SJOU Өڹ
ग़ྗ: ʢਖ਼ৗҟৗʣ ྨ 1PPMJOH 'JOHFSQSJOU 1PPMJOH 'JOHFSQSJOU ̍ۙ ۙ ʜ ʜ // ˎ 8 ˎ 8 ˎ 8 $POW $POW ˎ 8 ˎ 8 ˎ 8 ೖྗ ఏҊख๏ᶄͰɼ ਖ਼ৗঢ়ଶ͓Αͼҟৗঢ়ଶΛ෦άϥϑ୯ҐͰֶश͢ΔͨΊɼෳͷਖ਼ৗঢ় ଶ͕ଘࡏ͢Δ߹ʹؤڧͳݕ͕ظͰ͖Δɽ ਤ /'1ͷωοτϫʔΫུ֓ਤ ఏҊख๏ᶃͷ՝ ୯Ұͷਖ਼ৗঢ়ଶΛԾఆ͍ͯ͠ΔͨΊɼෳͷਖ਼ৗঢ়ଶʢ࣌ؒґଘڥґଘͳ Ͳʣ͕ଘࡏ͢Δ߹ʹޡݕ͢Δ߹͕༧͞ΕΔɽ
എܠ త ఏҊख๏ ࣮ݧ݁Ռ τϥϑΟοΫσʔλͷάϥϑԽ ఏҊख๏ᶃɿڭࢣͳֶ͠शܕ
ఏҊख๏ᶄڭࢣ͋Γֶशܕ ·ͱΊ
·ͱΊ • τϥϑΟοΫσʔλͷάϥϑߏԽʹޭͨ͠ɽ • άϥϑߏʹج͍ͮͨ̎छྨͷػցֶशख๏ ʢڭࢣͳֶ͠शܕ͓Αͼڭࢣ͋ΓֶशܕʣΛఏ Ҋͨ͠ɽ •
ҟৗݕͷΈͳΒͣɼݕ݁ՌΛఆྔతͳ ʹج͍ͮͨϊʔυ෦άϥϑͷՄࢹԽʹΑͬ ͯઆ໌Ͱ͖Δ*%4࣮ݱͷՄೳੑΛࣔͨ͠ɽ ࠓޙͷ՝ • ࠷৽σʔληοτͰͷ༗ޮੑݕূ • ϊʔυͷछྨͷ࠶ݕ౼ • ڭࢣ͋Γͳ͠ͷΈ߹ΘͤʹΑΔઆ໌ੑͷ্ ఏҊख๏ᶄ ڭࢣ͋Γֶशܕ %"31" ෳͷ࣌ܥྻಛྔΛநग़ ରࠩܥྻσʔλͷม ඪ४Խ ૄߏֶशʢ(SBQIJDBM-BTTPʣ άϥϑͷ่Ε άϥϑΈࠐΈ // ఏҊख๏ᶃ ڭࢣͳֶ͠शܕ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠