Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介 / PIGLeT: Language Grounding Through Neuro...
Search
Kyosuke Nishida
September 09, 2021
Research
1
750
論文紹介 / PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World
第13回最先端NLP勉強会の発表スライドです.
論文:
https://aclanthology.org/2021.acl-long.159/
Kyosuke Nishida
September 09, 2021
Tweet
Share
More Decks by Kyosuke Nishida
See All by Kyosuke Nishida
論文紹介 / The Llama 3 Herd of Models
kyoun
7
1.7k
大規模言語モデル入門 / LLM introduction (SES2023)
kyoun
66
21k
論文紹介 / Llama 2: Open Foundation and Fine-Tuned Chat Models
kyoun
5
7.2k
PAKDD2023 Tutorial 2: A Gentle Introduction to Technologies Behind Language Models and Recent Achievement in ChatGPT (Parts 3 and 4)
kyoun
7
1.8k
Collaborative AI: 視覚・言語・行動の融合
kyoun
21
8.3k
NLPとVision-and-Languageの基礎・最新動向 (1) / DEIM Tutorial Part 1: NLP
kyoun
25
9.9k
NLPとVision-and-Languageの基礎・最新動向 (2) / DEIM Tutorial Part 2 Vision-and-Language
kyoun
20
11k
論文紹介 / Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality
kyoun
2
850
自然言語処理とVision-and-Language / A Tutorial on NLP & Vision-and-Language
kyoun
23
12k
Other Decks in Research
See All in Research
CUNY DHI_Lightning Talks_2024
digitalfellow
0
120
精度を無視しない推薦多様化の評価指標
kuri8ive
1
290
snlp2024_multiheadMoE
takase
0
460
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
200
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
350
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
180
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
130
ダイナミックプライシング とその実例
skmr2348
3
480
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
190
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
180
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
360
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
130
Featured
See All Featured
Code Review Best Practice
trishagee
65
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Done Done
chrislema
181
16k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Why Our Code Smells
bkeepers
PRO
335
57k
For a Future-Friendly Web
brad_frost
175
9.4k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Thoughts on Productivity
jonyablonski
67
4.4k
Transcript
論⽂紹介 紹介者: ⻄⽥京介(NTT⼈間情報研究所) 2021/09/16 @ 第13回最先端NLP勉強会
• 何をする研究か︖ – ⾃然⾔語と実世界のグラウンディングにneuro-symbolicな アプローチで取り組む – 現在の状態と⾏動から「次に何が起きるか」を⾔語や記 号表現で予測する • 貢献は何か︖
– データセット PigPen を整備・公開 – Physical dynamicsモデルと⾔語モデルを分離して学習可 能なモデル PIGLet を提案 • 嬉しさは︖(個⼈的感想) – ⾝体性を有するAIの実現へ向けた重要なステップの達成 – 事前学習済⾔語モデルと,実世界の物理的な commonsenseの知識を結びつける知⾒の獲得 まとめ 2
• 本研究のセットアップ – タスク定義(NLU,NLG) – データセット PIGPeN • 提案モデル –
PIGLet の構成 – 物理ダイナミクスモデルの学習 – ⾔語モデルの事前学習 – ⾔語モデルと物理ダイナミクスの結合 • 評価実験 – NLUタスク – NLGタスク – ⾔語モデルの事前学習内容の影響 3 ⽬次
• 3Dシミュレーション環境における 初期状態 ⃗ 𝑜 × ⾏動 𝑎 → ⾏動結果
⃗ 𝑜!のモデル化 本研究で取り組むタスク(1) ⾏動 𝑎(⾔語表現) 初期状態 ⃗ 𝑜 (記号表現) 物体の属性値集合 ⾏動結果 ⃗ 𝑜!(記号表現) 物体の属性値集合 4
• 3Dシミュレーション環境における 初期状態 ⃗ 𝑜 × ⾏動 𝑎 → ⾏動結果
⃗ 𝑜!のモデル化 本研究で取り組むタスク(2) 視覚情報の理解(物体検 出など)はスコープ外 ⾏動結果 ⃗ 𝑜!(⾔語表現) 初期状態 ⃗ 𝑜 (記号表現) 物体の属性値集合 ⾏動 𝑎(記号表現) 5
• 280k Transitions( 初期状態 ⃗ 𝑜 × ⾏動 𝑎 →
⾏動結果 ⃗ 𝑜! ︔ すべて記号表現)を3dシミュレータ THOR により作成. – 1つの状態を表す物体数は最⼤2個まで – 物体 126種(125?),⾏動 13種(10-20?),属性 42種 • 2k Transitionsについて⾔語説明を付与 – Train: 500(30種の物体についてはtest時”unseen”とするため除外) – Val: 500,Test: 1000 6 データセット PIGPeN 280k (記号表現) 2k (⾔語説明)
• 本研究のセットアップ – タスク定義(NLU,NLG) – データセット PIGPeN • 提案モデル –
PIGLet の構成 – 物理ダイナミクスモデルの学習 – ⾔語モデルの事前学習 – ⾔語モデルと物理ダイナミクスの結合 • 評価実験 – NLUタスク – NLGタスク – ⾔語モデルの事前学習内容の影響 7 ⽬次
PIGLeT モデル構成の概要 • 記号表現を扱う物理ダイナミクスモデルと⾔語モデルに分解 してモデリング 8
(a) 物理ダイナミクスモデル • 物理ダイナミクスモデルで,初期状態 ⃗ 𝑜 × ⾏動 𝑎 →
⾏動結 果 ⃗ 𝑜! をすべて記号表現で学習する 初期状態は 物体(最⼤2個) の属性値集合 で表現 ⾏動の 記号的な表現 初期状態から 変化する属性値 を予測 記号表現の系列を扱う Transformer encoder-decoder 9
10 物理ダイナミクスモデルの学習(1) • 物体エンコーダ(3層Transformer)により, 2つの物体(属性値の系列)をベクトルℎ"# , ℎ"$ に変換 (1)
11 物理ダイナミクスモデルの学習(2) • ⾏動エンコーダ(MLP)により,⾏動名𝑎と,⾏動の対象に 取る2つの物体名𝑜%# , 𝑜%$ の埋め込みを基にベクトルℎ% に変換 𝐡%
= MLP 𝐄 𝑎 , 𝐄 𝑜%# , 𝐄 𝑜%$ (2)
12 物理ダイナミクスモデルの学習(3) • ⾏動表現ℎ% を基に物体の表現ベクトルℎ"# , ℎ"$ を変換する – このモジュールが「物理シミュレーション」を担当
– 2つの物体をまとめて変換することを global アプローチと呼んでいる (1)の出⼒ (2)の出⼒ (1) (2) (3)
13 物理ダイナミクスモデルの学習(4) • 変換後の表現ベクトル , ℎ" を基に,⾏動結果の物体の属性値 を1つずつデコードして⽣成する ⽣成済の属性値 (3)の出⼒
(3) (4)
(b) ⾔語モデルの事前学習 • ⾃⼰回帰型⾔語モデル(smallest GPT-2; 117M)をWikipedia とBookコーパスで事前学習 14
(c) ⾔語と物理ダイナミクスの統合 • ⾔語モデルによる⾏動の表現を,物理ダイナミクスモデルの 表現へ転移して⾔語と実世界をグラウンディング 同じベクトル 表現になる ように学習 15 ⾏動の
記号表現 ⾏動の ⾔語表現
16 (1) ⾏動を⾔語で表現する • ⾏動⽂を⾔語モデル(GPT-2)で状態ベクトルℎ% にencode • NLUタスクにおいて⾔語モデルの出⼒を⾏動エンコーダの 代わりに使っても物体デコーダの出⼒が壊れないように学習
17 (2) 状態を⾔語で説明する • MLPで(初期状態, ⾏動, ⾏動結果)を要約した表現ℎ&"! , ℎ&"" を
GPT-2に渡して,⾏動結果を表す⽂章を⽣成・学習 • NLUタスク(⾔語⽣成しない)の場合でも,この学習は精度 向上に効果がある ℎ!"! , ℎ!""
• 本研究のセットアップ – タスク定義(NLU,NLG) – データセット PIGPeN • 提案モデル –
PIGLet の構成 – 物理ダイナミクスモデルの学習 – ⾔語モデルの事前学習 – ⾔語モデルと物理ダイナミクスの結合 • 評価実験 – NLUタスク – NLGタスク – ⾔語モデルの事前学習内容の影響 18 ⽬次
• タスク定義 – 初期状態 (属性値)× ⾏動(⾔語)→ ⾏動結果 (属性値) • No
Change – 初期状態の属性値のまま出⼒ • Text-to-Text – GPT-3,T5 – Object1,2の属性値を JSONスタイルで⼊⼒・出⼒する • BERT-style – ⼊⼒︓初期状態の属性値を物理ダイナ ミクスモデルでembeddingして BERTに与える + ⾏動の⾔語情報 – 出⼒︓hidden-stateのpooling vectorから属性値を予測 19 NLUタスクのベースライン
• 物体単位で全属性値を正確に予測できるかの指標Accuracy について,提案⼿法は⼤幅に精度向上 • 提案モデルでは訓練時に未知の物体についても精度が良い 20 評価結果(NLUタスク)
21 Ablation study (NLUタスク) • 2物体同時(global)に状態変化を予測するのと,⾏動結果 の⽂章の⾔語⽣成lossも使うことで,記号表現のみで学習す るupper boundに迫る精度が出ている (物理ダイナミクスモデルの)
• タスク定義 – 初期状態 (属性値)× ⾏動(記号表現)→ ⾏動結果 (⾔語) • Text-to-Text
– T5: Object1,2の属性値と⾏動をJSONスタイルで⼊⼒・出⼒する • LM baseline – MLP_applyをしない提案⼿法(物理ダイナミクスモデルによる 物理シミュレーションを⾏わない) 22 NLGタスクのベースライン
23 評価結果(NLGタスク) • 提案⼿法がベースラインを上回る結果 • 物理シミュレーション結果が⾔語⽣成にも貢献している • 主観評価(Faithfulness)では⼈間と⼤きな差
24 出⼒例 • 提案⼿法では訓練時に出現しないobject(Mug)についても ある程度正しく予測できている è ⾔語モデルの効果︖ マグカップを空にする コーヒーメーカー をオンにする
正解 ⾔語⽣成で マグカップに⾔及できていない 正解
25 ⾔語モデルの事前学習の効果 • ⾔語モデルの事前学習コーパスからunseen objectsに関する ⽂章を除いてみる(PIGLeT ZeroShotLang) – 例えばMugは2万回コーパスに出現 •
⾔語モデルで事前にobjectのcommonsenseを獲得できている ⽅が精度は良い(ただし,それほど悪くなっていない)
• 何をする研究か︖ – ⾃然⾔語と実世界のグラウンディングにneuro-symbolicな アプローチで取り組む – 現在の状態と⾏動から「次に何が起きるか」を⾔語や記 号表現で予測する • 貢献は何か︖
– データセット PigPen を整備・公開 – Physical dynamicsモデルと⾔語モデルを分離して学習可 能なモデル PIGLet を提案 • 嬉しさは︖(個⼈的感想) – ⾝体性を有するAIの実現へ向けた重要なステップの達成 – 事前学習済⾔語モデルと,実世界の物理的な commonsenseの知識を結びつける知⾒の獲得 まとめ 26
参考資料 27
• 3Dモデリングされた室内環境においてロボットの様々な⾏ 動をシミュレーション可能 28 環境︓AI2-THOW [Kolve et al. ,2017] Eric
Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, Ali Farhadi: AI2-THOR: An Interactive 3D Environment for Visual AI. CoRR abs/1712.05474 (2017)
• 最⼤2つの物体(126種)で表現される – Pan, Egg, Vase, Faucet, Mirror, Sink, Apple
,Fridge, etc. • 各物体は42種の属性値を持つ – 含む/含まれる物体,質量,サイズ,温度,その他多数の真偽値 29 状態の記号表現
• 最⼤2つの物体を引数に取る関数として表現される – 10〜20種︖ 数字がバラバラ • Fig. 2 (20) •
Section 2.1 (10) • Appendix B (11) • 公開データ* (13) 30 ⾏動の記号表現 ⾏動例(Appendix B) *https://github.com/rowanz/piglet /blob/main/data/annotations.jsonl
31 評価結果(NLUタスク︔属性値レベル)