Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoCon
Search
Zhang Yixiao
December 16, 2020
Science
0
360
CoCon
Zhang Yixiao
December 16, 2020
Tweet
Share
More Decks by Zhang Yixiao
See All by Zhang Yixiao
vq-cpc
ldzhangyx
0
360
MixPoet
ldzhangyx
4
410
diora
ldzhangyx
0
260
drummernet
ldzhangyx
0
230
ON-LSTM
ldzhangyx
0
180
Other Decks in Science
See All in Science
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
190
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
490
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
140
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
330
データマイニング - グラフデータと経路
trycycle
PRO
1
270
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
27k
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
120
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
機械学習 - SVM
trycycle
PRO
1
970
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
210
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
For a Future-Friendly Web
brad_frost
182
10k
Designing for humans not robots
tammielis
254
26k
The Language of Interfaces
destraynor
162
26k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
130
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
The SEO identity crisis: Don't let AI make you average
varn
0
62
Six Lessons from altMBA
skipperchong
29
4.1k
ラッコキーワード サービス紹介資料
rakko
1
2.2M
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
100
Transcript
CoCon: A Self-Supervised Approach for Controlled Text Generation Presenter: Yixiao
Zhang
TL;DR • 任务:用文本指导文本,进行可控生成 • 亮点: • 让文本成为控制变量:更加灵活 • 漂亮的损失函数 •
模型是自监督训练的 • 结果表明显著加强了语言模型的可控性
Introduction • 基于Transformer的预训练LM成为了新的浪潮,但是从头训练LM 的成本巨大 • 问题:不改变预训练LM的情况下,LM如何进行控制? • 解决办法1:PPLM,通过属性模型控制生成文本 • 缺点:不够精细,可能造成巨大差异
Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language models: a simple approach to controlled text generation. arXiv preprint arXiv:1912.02164, 2019.
Related Work • 生成包含所需属性的文本 • 早期工作 • 条件生成模型,可通过RL或GAN训练 • 缺陷:对预定属性的要求限制了生成文本的可能类型
• CTRL • 使用control code(预置的metadata)生成文本 • 缺陷:control code也是预先设定的 • PPLM(最相似) • 在LM上插拔一个模块,不重新训练实现生成 • 区别: • 本文旨在在更局部的内容上控制 • CoCon自监督学习,免去了标签数据
Related Work • 文本风格迁移 • 少数研究采用AE以分离表示 • 另外一些模型能识别attribute markers •
一些特定风格相关的n-grams • 通过替换的方式编辑文本风格
CoCon • 模型目标: • 给定引导文本1:−1 和控制文本,模型 生成: • 过程: •
分别编码c和x • 自注意力交互,得 到新的特征 • 进行下一个词预测
CoCon • CoCon是一个单层 Transformer Block • 首先得到x和c的QKV • 将KV拼起来过self-attn
Loss Function • 自重构损失(Self Reconstruction Loss) • 令c = ,使得模型能够学习结合控制文本的内容
• 无文本损失(Null Content Loss) • 令 = ∅,使得模型退化成LM,以生成流畅的文本
Loss Function • 循环重构损失(Cycle Reconstruction Loss) • 在inference中,生成文本不太可能与引导文本共存 • 给定两个不同的文本(,
′)
Loss Function • 对抗损失(Adversarial Loss) • 总优化目标
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
例子
多个控制