Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoCon
Search
Zhang Yixiao
December 16, 2020
Science
0
370
CoCon
Zhang Yixiao
December 16, 2020
Tweet
Share
More Decks by Zhang Yixiao
See All by Zhang Yixiao
vq-cpc
ldzhangyx
0
360
MixPoet
ldzhangyx
4
410
diora
ldzhangyx
0
260
drummernet
ldzhangyx
0
230
ON-LSTM
ldzhangyx
0
180
Other Decks in Science
See All in Science
Algorithmic Aspects of Quiver Representations
tasusu
0
180
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
520
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
760
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
140
Ignite の1年間の軌跡
ktombow
0
210
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
150
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
200
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.3k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
330
Featured
See All Featured
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
820
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
30 Presentation Tips
portentint
PRO
1
210
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Between Models and Reality
mayunak
1
180
The SEO identity crisis: Don't let AI make you average
varn
0
64
Thoughts on Productivity
jonyablonski
74
5k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
CoCon: A Self-Supervised Approach for Controlled Text Generation Presenter: Yixiao
Zhang
TL;DR • 任务:用文本指导文本,进行可控生成 • 亮点: • 让文本成为控制变量:更加灵活 • 漂亮的损失函数 •
模型是自监督训练的 • 结果表明显著加强了语言模型的可控性
Introduction • 基于Transformer的预训练LM成为了新的浪潮,但是从头训练LM 的成本巨大 • 问题:不改变预训练LM的情况下,LM如何进行控制? • 解决办法1:PPLM,通过属性模型控制生成文本 • 缺点:不够精细,可能造成巨大差异
Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language models: a simple approach to controlled text generation. arXiv preprint arXiv:1912.02164, 2019.
Related Work • 生成包含所需属性的文本 • 早期工作 • 条件生成模型,可通过RL或GAN训练 • 缺陷:对预定属性的要求限制了生成文本的可能类型
• CTRL • 使用control code(预置的metadata)生成文本 • 缺陷:control code也是预先设定的 • PPLM(最相似) • 在LM上插拔一个模块,不重新训练实现生成 • 区别: • 本文旨在在更局部的内容上控制 • CoCon自监督学习,免去了标签数据
Related Work • 文本风格迁移 • 少数研究采用AE以分离表示 • 另外一些模型能识别attribute markers •
一些特定风格相关的n-grams • 通过替换的方式编辑文本风格
CoCon • 模型目标: • 给定引导文本1:−1 和控制文本,模型 生成: • 过程: •
分别编码c和x • 自注意力交互,得 到新的特征 • 进行下一个词预测
CoCon • CoCon是一个单层 Transformer Block • 首先得到x和c的QKV • 将KV拼起来过self-attn
Loss Function • 自重构损失(Self Reconstruction Loss) • 令c = ,使得模型能够学习结合控制文本的内容
• 无文本损失(Null Content Loss) • 令 = ∅,使得模型退化成LM,以生成流畅的文本
Loss Function • 循环重构损失(Cycle Reconstruction Loss) • 在inference中,生成文本不太可能与引导文本共存 • 给定两个不同的文本(,
′)
Loss Function • 对抗损失(Adversarial Loss) • 总优化目标
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
例子
多个控制