Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoCon
Search
Zhang Yixiao
December 16, 2020
Science
0
340
CoCon
Zhang Yixiao
December 16, 2020
Tweet
Share
More Decks by Zhang Yixiao
See All by Zhang Yixiao
vq-cpc
ldzhangyx
0
340
MixPoet
ldzhangyx
4
370
diora
ldzhangyx
0
250
drummernet
ldzhangyx
0
200
ON-LSTM
ldzhangyx
0
160
Other Decks in Science
See All in Science
SciPyDataJapan 2025
schwalbe10
0
140
Coqで選択公理を形式化してみた
soukouki
0
290
Spectral Sparsification of Hypergraphs
tasusu
0
250
Pericarditis Comic
camkdraws
0
1.5k
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
100
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
240
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
720
学術講演会中央大学学員会大分支部
tagtag
0
120
オンプレミス環境にKubernetesを構築する
koukimiura
0
130
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
550
学術講演会中央大学学員会八王子支部
tagtag
0
270
ACL読み会2024@名大 REANO: Optimising Retrieval-Augmented Reader Models through Knowledge Graph Generation
takuma_matsubara
0
150
Featured
See All Featured
Designing for Performance
lara
604
68k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Bash Introduction
62gerente
611
210k
Typedesign – Prime Four
hannesfritz
40
2.5k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Cost Of JavaScript in 2023
addyosmani
47
7.4k
What's in a price? How to price your products and services
michaelherold
244
12k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Docker and Python
trallard
44
3.3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Transcript
CoCon: A Self-Supervised Approach for Controlled Text Generation Presenter: Yixiao
Zhang
TL;DR • 任务:用文本指导文本,进行可控生成 • 亮点: • 让文本成为控制变量:更加灵活 • 漂亮的损失函数 •
模型是自监督训练的 • 结果表明显著加强了语言模型的可控性
Introduction • 基于Transformer的预训练LM成为了新的浪潮,但是从头训练LM 的成本巨大 • 问题:不改变预训练LM的情况下,LM如何进行控制? • 解决办法1:PPLM,通过属性模型控制生成文本 • 缺点:不够精细,可能造成巨大差异
Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language models: a simple approach to controlled text generation. arXiv preprint arXiv:1912.02164, 2019.
Related Work • 生成包含所需属性的文本 • 早期工作 • 条件生成模型,可通过RL或GAN训练 • 缺陷:对预定属性的要求限制了生成文本的可能类型
• CTRL • 使用control code(预置的metadata)生成文本 • 缺陷:control code也是预先设定的 • PPLM(最相似) • 在LM上插拔一个模块,不重新训练实现生成 • 区别: • 本文旨在在更局部的内容上控制 • CoCon自监督学习,免去了标签数据
Related Work • 文本风格迁移 • 少数研究采用AE以分离表示 • 另外一些模型能识别attribute markers •
一些特定风格相关的n-grams • 通过替换的方式编辑文本风格
CoCon • 模型目标: • 给定引导文本1:−1 和控制文本,模型 生成: • 过程: •
分别编码c和x • 自注意力交互,得 到新的特征 • 进行下一个词预测
CoCon • CoCon是一个单层 Transformer Block • 首先得到x和c的QKV • 将KV拼起来过self-attn
Loss Function • 自重构损失(Self Reconstruction Loss) • 令c = ,使得模型能够学习结合控制文本的内容
• 无文本损失(Null Content Loss) • 令 = ∅,使得模型退化成LM,以生成流畅的文本
Loss Function • 循环重构损失(Cycle Reconstruction Loss) • 在inference中,生成文本不太可能与引导文本共存 • 给定两个不同的文本(,
′)
Loss Function • 对抗损失(Adversarial Loss) • 总优化目标
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
例子
多个控制