Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoCon
Search
Zhang Yixiao
December 16, 2020
Science
0
350
CoCon
Zhang Yixiao
December 16, 2020
Tweet
Share
More Decks by Zhang Yixiao
See All by Zhang Yixiao
vq-cpc
ldzhangyx
0
350
MixPoet
ldzhangyx
4
380
diora
ldzhangyx
0
250
drummernet
ldzhangyx
0
210
ON-LSTM
ldzhangyx
0
160
Other Decks in Science
See All in Science
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
530
機械学習 - pandas入門
trycycle
PRO
0
280
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
460
KH Coderチュートリアル(スライド版)
koichih
1
42k
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
170
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
420
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
960
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
機械学習 - DBSCAN
trycycle
PRO
0
930
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
560
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
990
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
510
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Designing for Performance
lara
610
69k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.3k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
340
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Unsuck your backbone
ammeep
671
58k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
CoCon: A Self-Supervised Approach for Controlled Text Generation Presenter: Yixiao
Zhang
TL;DR • 任务:用文本指导文本,进行可控生成 • 亮点: • 让文本成为控制变量:更加灵活 • 漂亮的损失函数 •
模型是自监督训练的 • 结果表明显著加强了语言模型的可控性
Introduction • 基于Transformer的预训练LM成为了新的浪潮,但是从头训练LM 的成本巨大 • 问题:不改变预训练LM的情况下,LM如何进行控制? • 解决办法1:PPLM,通过属性模型控制生成文本 • 缺点:不够精细,可能造成巨大差异
Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language models: a simple approach to controlled text generation. arXiv preprint arXiv:1912.02164, 2019.
Related Work • 生成包含所需属性的文本 • 早期工作 • 条件生成模型,可通过RL或GAN训练 • 缺陷:对预定属性的要求限制了生成文本的可能类型
• CTRL • 使用control code(预置的metadata)生成文本 • 缺陷:control code也是预先设定的 • PPLM(最相似) • 在LM上插拔一个模块,不重新训练实现生成 • 区别: • 本文旨在在更局部的内容上控制 • CoCon自监督学习,免去了标签数据
Related Work • 文本风格迁移 • 少数研究采用AE以分离表示 • 另外一些模型能识别attribute markers •
一些特定风格相关的n-grams • 通过替换的方式编辑文本风格
CoCon • 模型目标: • 给定引导文本1:−1 和控制文本,模型 生成: • 过程: •
分别编码c和x • 自注意力交互,得 到新的特征 • 进行下一个词预测
CoCon • CoCon是一个单层 Transformer Block • 首先得到x和c的QKV • 将KV拼起来过self-attn
Loss Function • 自重构损失(Self Reconstruction Loss) • 令c = ,使得模型能够学习结合控制文本的内容
• 无文本损失(Null Content Loss) • 令 = ∅,使得模型退化成LM,以生成流畅的文本
Loss Function • 循环重构损失(Cycle Reconstruction Loss) • 在inference中,生成文本不太可能与引导文本共存 • 给定两个不同的文本(,
′)
Loss Function • 对抗损失(Adversarial Loss) • 总优化目标
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
实验 • 文本引导的文本生成评估指标有BLEU、NIST、METEOR、PPL和 Dist-1/2/3
例子
多个控制