Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ON-LSTM
Search
Zhang Yixiao
July 05, 2019
Research
0
170
ON-LSTM
Zhang Yixiao
July 05, 2019
Tweet
Share
More Decks by Zhang Yixiao
See All by Zhang Yixiao
CoCon
ldzhangyx
0
360
vq-cpc
ldzhangyx
0
350
MixPoet
ldzhangyx
4
390
diora
ldzhangyx
0
260
drummernet
ldzhangyx
0
210
Other Decks in Research
See All in Research
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
880
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
300
能動適応的実験計画
masakat0
2
920
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
400
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
820
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.7k
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
270
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
940
Remote sensing × Multi-modal meta survey
satai
4
530
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.1k
When Learned Data Structures Meet Computer Vision
matsui_528
1
180
ip71_contraflow_reconfiguration
stkmsd
0
110
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Six Lessons from altMBA
skipperchong
29
4k
A Tale of Four Properties
chriscoyier
161
23k
Music & Morning Musume
bryan
46
6.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Context Engineering - Making Every Token Count
addyosmani
8
330
Building Applications with DynamoDB
mza
96
6.7k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Side Projects
sachag
455
43k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Optimizing for Happiness
mojombo
379
70k
Transcript
ORDERED NEURONS: INTEGRATING TREE STRUCTURES INTO RECURRENT NEURAL NETWORKS (ICLR
2019, BEST PAPER AWARD
在语言模型中引入树结构 • 能获得抽象化级别不断提升的分层表征; • 能捕获复杂语言现象,如长期依赖问题与组分效应; • 能为梯度反向传播提供捷径。
ON-LSTM • 用有序神经元表达层次结构 • Contribution • 1.提高了语言模型的效果 • 2.可以无监督地学习到句子的句法结构
LSTM
语言和序信息 • 在常见的神经网络中,神经元通常都是无序的 • ON-LSTM则试图把这些神经元排个序,并且用这个序来表示一些特定的结构,从 而把神经元的序信息利用起来
层级结构 • 层级越低代表语言中颗粒度越小的结构,而层级越高则代表颗粒度越粗的结构 • 自然语言:字——词——短语 • 层级越高,颗粒度越粗,那么它在句子中的跨度就越大
ON-LSTM的设计方向 • 层级越高,颗粒度越粗,那么它在句子中的跨度就越大 • 要求: • 1. 能区分高低层级的信息 • 2.
能让高层级的信息保留更久,底层级的信息更容易被遗忘
设计:分区间更新 • 假设ON-LSTM中的神经元都排好序后,向量Ct的index越小的元素,表示越低层级 的信息,而index越大的元素,则表示越高层级的信息 • 步骤: • 1. 初始化一个全零的Ct •
2. 预测历史信息ht-1 和当前输入的层级xt 的层级df, di
层次更新的两种可能 • 1. df ≤ di , 这意味着当前输入xt 的层级要高于历史记录ht−1 的层级,那就是说,两者
之间的信息流有交汇,当前输入信息要整合到高于等于df 的层级中
层次更新的两种可能 • 2. df > di , 这意味着历史记录和当前输入互不相交。
分层更新的作用 • 高层信息就可能保留相当长的距离(因为高层直接复制历史信息,导致历史信息可 能不断被复制而不改变); • 而低层信息在每一步输入时都可能被更新(因为低层直接复制输入,而输入是不断 改变的)。 • 所以就通过信息分级来嵌入了层级结构。 •
更通俗地说就是分组更新,更高的组信息传得更远(跨度更大),更低的组跨度更 小,这些不同的跨度就形成了输入序列的层级结构。
函数软化 • F1 和F2 ,输出层级整数,但这样的模型通常是不可导的 • 替代:使用softmax,替换成一个分类模型。df => 1df (one
hot向量) • 分层更新的实际操作:
无监督语法 • 从softmax向量反过来转换为层级:
贪心算法析出层次结构 • 给定输入序列{xt }到预训练好的ON-LSTM,输出对应的层级序列{df,t }, • 然后找出层级序列中最大值所在的下标,比如k, • 那么就将输入序列分区为[xt<k ,[xk
,xt>k ]]。 • 然后对子序列xt <k和xt >k重复上述步骤,直到每个子序列长度为1。
None