Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
膨大なデータ活用のためのAmazon QuickSightを使った 技術構成
Search
Tech Leverages
June 24, 2024
Technology
1
6.9k
膨大なデータ活用のためのAmazon QuickSightを使った 技術構成
Tech Leverages
June 24, 2024
Tweet
Share
More Decks by Tech Leverages
See All by Tech Leverages
未来を拓くAI技術〜エージェント開発とAI駆動開発〜
leveragestech
2
220
コンテキストエンジニアリングで変わるAI活用 リファクタリングワークフローの実践から学んだ形式知
leveragestech
0
120
AirflowでDataformを制御するポイント
leveragestech
0
110
古き良き Laravel のシステムは関数型スタイルでリファクタできるのか
leveragestech
1
1.2k
リファクタリングいつやるの? 〜依存の整理〜
leveragestech
0
120
ディメンショナルモデリングを軽く語る
leveragestech
1
5.1k
アクターモデルによる効率的な分散システム設計
leveragestech
0
5k
Terraform による運用効率化の取り組みと最新のテストアプローチの紹介
leveragestech
0
4.9k
OpenFGAで拓く次世代認可基盤 〜予告編〜
leveragestech
0
5k
Other Decks in Technology
See All in Technology
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.6k
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
450
AWSで始める実践Dagster入門
kitagawaz
1
680
「Linux」という言葉が指すもの
sat
PRO
4
140
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
220
テストを軸にした生き残り術
kworkdev
PRO
0
210
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
110
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
450
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
2
470
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
160
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
890
Practical Agentic AI in Software Engineering
uzyn
0
110
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1370
200k
Gamification - CAS2011
davidbonilla
81
5.4k
A Tale of Four Properties
chriscoyier
160
23k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Producing Creativity
orderedlist
PRO
347
40k
How GitHub (no longer) Works
holman
315
140k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Visualization
eitanlees
148
16k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
We Have a Design System, Now What?
morganepeng
53
7.8k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Embracing the Ebb and Flow
colly
87
4.8k
Transcript
| © 2024 Levtech Co., Ltd. 1 膨大なデータ活用のための Amazon QuickSightを使った 技術構成
2024/06/21 AWS Summit Japan @幕張 レバテック株式会社 内藤 翔太 / 塚原 渉
| © 2024 Levtech Co., Ltd. 2 自己紹介 塚原 渉 内藤
翔太 レバテック開発部/レバテックプラットフォーム開発チーム
| © 2024 Levtech Co., Ltd. 3 会社紹介| サービス紹介 IT事業 若年層事業 医療/介護事業
海外事業 ほか事業
| © 2024 Levtech Co., Ltd. 4 会社紹介|技術広報 カンファレンススポンサー や テックブログ
に力を入れてます! もフォローしてね! etc.
| © 2024 Levtech Co., Ltd. 5 1. レバテックプラットフォームの紹介 2. Amazon
QuickSightで何を実現したのか? 3. 検証環境でのデモ 4. Amazon QuickSightを使ったアーキテクチャ 目次
| © 2024 Levtech Co., Ltd. 6 1. レバテックプラットフォームの紹介 2. Amazon
QuickSightで何を実現したのか? 3. 検証環境でのデモ 4. Amazon QuickSightを使ったアーキテクチャ 目次
| © 2024 Levtech Co., Ltd. 7 レバテックプラットフォームの紹介 IT人材 企業 情報
収集 案件 作成 商談 契約 契約 商談 案件 応募 情報 収集
| © 2024 Levtech Co., Ltd. 8 1. レバテックプラットフォームの紹介 2. Amazon
QuickSightで何を実現したのか? 3. 検証環境でのデモ 4. Amazon QuickSightを使ったアーキテクチャ 目次
| © 2024 Levtech Co., Ltd. 9 Amazon QuickSightで何を実現したのか? 案件への参画までに、企業もIT人材もたくさんの不安がありました。 IT人材
企業 情報 収集 案件 作成 商談 契約 契約 商談 案件 応募 情報 収集 どのくらいの単 価を設定すべき かなあ どんな条件で募集し たら求める人材に届 くかなあ 自身のスキルで はどのくらい単 価がもらえるの かなあ 自身のスキルに あった案件はど のくらいあるか なあ
| © 2024 Levtech Co., Ltd. 10 Amazon QuickSightで何を実現したのか? 企業 /
IT人材にAmazon QuickSightでフリーランス市場のデータを提供 https://aws.amazon.com/jp/quicksightより引用
| © 2024 Levtech Co., Ltd. 11 Amazon QuickSightで何を実現したのか? 企業向けの価値 例えば、、
・自社の求めるスキルを持つ人材の単価の分布がわかる! ・自社の案件の募集条件にマッチする人材の分布がわかる!
| © 2024 Levtech Co., Ltd. 12 Amazon QuickSightで何を実現したのか? IT人材向けの価値 例えば、、
・自身のスキルに合った案件がどのくらいあるかがわかる! ・自身のスキルに合った案件の単価の分布がわかる!
| © 2024 Levtech Co., Ltd. 13 1. レバテックプラットフォームの紹介 2. Amazon
QuickSightで何を実現したのか? 3. 検証環境でのデモ 4. Amazon QuickSightを使ったアーキテクチャ 目次
IT人材向け・企業向けレバテックプラットフォームにて、Amazon QuickSightを使った 市場分析のページをお見せします! 検証環境でのデモ
| © 2024 Levtech Co., Ltd. 15 1. レバテックプラットフォームの紹介 2. Amazon
QuickSightで何を実現したのか? 3. 検証環境でのデモ 4. Amazon QuickSightを使ったアーキテクチャ 目次
| © 2024 Levtech Co., Ltd. 16 Amazon QuickSightを使ったアーキテクチャ 市場分析ダッシュボードを表示するまでのデータフロー
| © 2024 Levtech Co., Ltd. 17 Amazon QuickSightを使ったアーキテクチャ 市場分析ダッシュボードを表示するまでのデータフロー Embulkの採用理由
1. Athena-BigQueryコネクターの動作が不安定 だったため 2. DB→BigQuery間の連携でEmbulkの利用実績があったため
| © 2024 Levtech Co., Ltd. 18 Amazon QuickSightを使ったアーキテクチャ 市場分析ダッシュボードを表示するまでのデータフロー Troccoの採用理由
1. 自社内ですでに導入実績があったため 2. 加工なしでデータを連携させるだけで、SaaSであるTrocco を利用し た方がメンテナンスコストを削減できるため
ありがとうございました! 是非ブースにお越しください!