Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction of LINE Data Science Team
Search
LINE Developers
PRO
October 15, 2019
Technology
7
12k
Introduction of LINE Data Science Team
※2022/4/26更新
LINE株式会社 Data Science室の組織紹介資料です。
LINE Developers
PRO
October 15, 2019
Tweet
Share
More Decks by LINE Developers
See All by LINE Developers
LINEスタンプのSREing事例集:大きなスパイクアクセスを捌くためのSREing
line_developers
PRO
1
1.9k
Java 21 Overview
line_developers
PRO
6
1k
Code Review Challenge: An example of a solution
line_developers
PRO
1
1.1k
KARTEのAPIサーバ化
line_developers
PRO
1
440
著作権とは何か?〜初歩的概念から権利利用法、侵害要件まで
line_developers
PRO
5
2k
生成AIと著作権 〜生成AIによって生じる著作権関連の課題と対処
line_developers
PRO
3
2k
マイクロサービスにおけるBFFアーキテクチャでのモジュラモノリスの導入
line_developers
PRO
9
3k
A/B Testing at LINE NEWS
line_developers
PRO
3
830
LINEのサポートバージョンの考え方
line_developers
PRO
2
1.1k
Other Decks in Technology
See All in Technology
Lexical Analysis
shigashiyama
1
150
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
470
スクラム成熟度セルフチェックツールを作って得た学びとその活用法
coincheck_recruit
1
140
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
380
B2B SaaSから見た最近のC#/.NETの進化
sansantech
PRO
0
730
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
開発生産性を上げながらビジネスも30倍成長させてきたチームの姿
kamina_zzz
2
1.7k
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
0
110
スクラムチームを立ち上げる〜チーム開発で得られたもの・得られなかったもの〜
ohnoeight
2
350
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
2
590
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
110
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.6k
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Docker and Python
trallard
40
3.1k
Speed Design
sergeychernyshev
24
610
Documentation Writing (for coders)
carmenintech
65
4.4k
Bash Introduction
62gerente
608
210k
Practical Orchestrator
shlominoach
186
10k
The Pragmatic Product Professional
lauravandoore
31
6.3k
KATA
mclloyd
29
14k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
A Philosophy of Restraint
colly
203
16k
Scaling GitHub
holman
458
140k
Transcript
Data Science室と 募集中ポジションの紹介 Data Science Department, Data Science Center, LINE
Corp.
Agenda • Data Science室を理解するための基礎知識 • Data Science室での業務 • 選考プロセスと求めるスキル
Data Science室を理解するための 基礎知識
LINE STYLE LINEは全社的に”Data-driven”を推し進めている https://linecorp.com/pdf/ja/LINE_STYLE_BOOK.pdf より抜粋
Data Science Centerとは Data Science Center = “攻め”のデータ活⽤を先導する組織 意思決定を⽀援し⼈を動かすためのデータ分析 プロダクトを最適化するための機械学習
• Machine Learning Solution 室および他のデータ関連組織と協業しながらデータ活⽤を先導 主な業務領域 Data Science 1 & 2 Machine Learning Solution Data Science Center Ad Data 広告事業に関するデータ分析とエンジニアリング ML&DS Planning team データ活⽤に関するプロジェクトマネジメント
最近のプロジェクト例(2022年4⽉時点) Data Science室は 多くの重要なプロジェクトに関わっている LINEアプリ LINE ファミリー サービス LINEの 法⼈向けサービス
LINE Financial サービス横断 プロジェクト • Home tab, Chat tab, LINE VOOM 等のUI/UX • LINEスタンプ • LINEギフト • LINE MUSIC、など • LINE公式アカウント • LINE広告 • LINE Pay • その他⾦融系サービス • Smart Channel • LINEコンテンツ & サービスプラットフォーム
Data Science室の業務の概要
ざっくりまとめると • 担当サービスごとのチームに所属、1⼈1プロジェクト、裁量⼤きめ • サービス側の企画担当者と直接やり取りする形で進める • 依頼されたことをやるだけではなく、⾃発的に提案し分析結果を活⽤するところ までしっかり関わる • 分析スキルにとどまらない”強み”を持っている⽅が活躍している
• LINEでやるデータサイエンスはおもしろい!
担当プロダクト及び LINEプラットフォーム全体への貢献を⽬指す Data Science室のミッション 1. データ分析によって各LINEサービスの競争⼒を最⼤化する • データを活⽤した継続的改善の仕組みづくり • 重要かつ難易度の⾼い課題の解決
2. LINE全体のデータ活⽤レベルを向上させる • 全てのLINERのデータ活⽤レベルの底上げ/引き上げ • 広く適⽤可能なデータ分析の仕組み(プラットフォーム、プロセス、⽅法論、 etc.)の提供
基本1⼈1PJ、PJメンバー同⼠で議論・レビューし合う プロジェクトへのアサイン⽅針と仕事の進め⽅ 事業部X 事業部Y プロジェクトZ チームA チームB チームA チームB …
Data Science室 データ サイエンティスト • データ理解やドメイン知識がアウトプットの量・質に直結 → 基本は1年単位でアサイン固定 • PJチーム内でお互いに議論・レビュー • DS室内でもSlackや週次定例を通して事例共有などを実施 分析サポート PJごとに チーム化
事業側の協業相⼿と直接やり取りしながら、 ⾃⾝で判断しつつ業務を進める 協業相⼿ 例えば 主な協業相⼿ 協業の頻度 サービス企画者 (プロダクト担当、 マーケティング担当、 etc.)
• 新規リリースした機能の効果検証(A/Bテスト含む) • 新機能開発時の基礎となる仮説の検証 • KPIの整理とダッシュボード化 ⾼ エンジニア • 各種ログに関する質問・確認 • A/Bテスト時の相談(ユーザー割当、UI出し分け等) 中 事業部 DSC 機械学習 エンジニア 低〜中 • 担当サービスのレコメンドシステムの仕様に関する議論 • レコメンド導⼊/改善時のA/Bテスト その他 情報セキュリティ ・データマネジメント 担当者 中 • データの利⽤条件についてセキュリティ⽬線での確認 • 新規サービスの分析環境構築の相談 データ サイエンティスト ⾼ • 他サービスの事例について共有、ヒアリング • データ分析全般に関するディスカッション
「何を解くべきか」「何に使うべきか」まで⾃ら考える 分析業務において重要な3つのポイント アウトプットを 活かすところまで しっかり関わる • 「分析結果を使って何をやるべきか?」の議論、および実⾏の⽀援・検 証まで関わる • アウトプットはWikiにまとめて、対⾯で説明とネクストアクションに関
する議論まで実施することを推奨(関係者が容易に理解できるケースで はSlackで共有のみで済ませることも多々ある) 解くべき課題は プロアクティブに 発⾒・設定する • 過去の分析や普段のコミュニケーションをもとに、⾃ら課題を発⾒する • 依頼された業務でも、妥当でなければ⾃ら調整を加える(実施しない判 断をすることもある) 本質的に重要なこ とに集中する • 「なるほど、⾯⽩いね」で終わる分析はやらない • 逆に、重要であれば単純なデータ抽出にも関わる
スキルレベルと成果の評価の全体像 ベーススキルと分析プロセスごとのスキルを 定義し総合的に評価する DS室の 良いアウトプット • 継続的改善や意思決定が⾃動的に(DS室の作業なしで)回る • 重要な課題解決への取り組みを適切に前に進められる 課題定義
課題解決 サービス適⽤ 仕組み化 統計解析、ETL、可視化、etc. コミュニケーション、他部署巻き込み、リーダーシップ、etc. コアメンバー シニア以上
よくある質問:Machine Learning室との求める⼈材や役割分担の違いは? サービスごとに個別カスタマイズ サービス間で共通(プラットフォーム) ⼈間の意思決定 サポート プロダクトに 適⽤する機械学習 (エンジニアリング) ML
DS DSで チャレンジ したい • ML室:分析スキル + 膨⼤なログを効率的に処理するためのエンジニアリング⼒ DS室:分析スキル + 分析結果を事業に活かすためのコミュニケーション⼒・主体性 • DS室でも機械学習を使った業務は必要に応じて実施(例:KPI異常検知、キャンペーンユーザーのターゲ ティング、マーケティングオートメーションの設計、等) ML室はプロダクトに適⽤する機械学習にフォーカス
分析ツールは課題や好みに合ったものを選択する よくある質問:分析環境は? <凡例> ◎:⾮常によく使う ◦:よく使う △:たまに使うが他のツールの⽅がメジャー ※◎◦△は本資料作成者の私⾒です 集計 データマート 作成
可視化 モデル開発 結果の共有 ⾃動化 Yanagishima OASIS Airflow Tableau Confluence RStudio Jupyter Presto, HiveのWeb UI。SQLを実⾏するシンプルなツール SQL, Scala, PySpark, SparkRなどが利⽤可能なnotebook形 式のツール。スケジュール機能で定常レポートとしても活⽤。 ⾔わずと知れたワークフローエンジン Tableau Serverにより多数のレポートを提供。 企画チームに提供するレポートは基本的にConfluenceで書く ⾔わずと知れたRの統合分析環境 ⾔わずと知れたnotebook形式の分析環境 ◎ ◎ ◎ △ ◦ ◦ ◎ ◦ ◎ △ ◦ ◎ ◎ ◦ ◦ ◎ ◎ ◎ ◎ ◎ ◎ ◎ • オンプレのHadoop環境で主に以下のツール群を利⽤して分析する • ⼤規模なサービスの分析もストレスなく実⾏できる分析環境がある
様々なバックグラウンドのメンバー Data Science室に聞いてみました:⼊社前の経歴(n=15) 化学 ⼟⽊ 電⼦⼯学、情報学 意思決定⽀援 データサイエンス 統計学 数学、情報⼯学
数理情報学 数理統計学 物性物理学 物理 物理、情報⼯学 物理学 マーケティングサイエンス 経済学 主に学んだ学問 主な経験業種 webサービス ソーシャルゲーム R&Dエンジニア R&D インフラエンジニア システムエンジニア システム開発 ⼤⼿精密機器メーカーの設計開発 材料系研究開発 電機メーカーで開発・設計 データサイエンティスト 遺伝⼦データ解析 公的研究機関の研究員 研究機関 ⾦融業界
分析にとどまらない強みを持つ⼈が活躍している Data Science室に聞いてみました:LINEで活躍できるデータサイエンティストの特徴(n=15) ⾃分で考え抜く⼒がある データ分析によるインサイトの発⾒や技術の探求が⾯ ⽩いと感じる⽅ 得意技を持っている⼈ 統計や分析ツールに関する知識と他部署(ビジネス部 ⾨)とうまくコミュニケーションできるスキルをバラ ンスよく持ち合わせた⼈
データを触るのが好きな⼈ ビジネス推進における不確定要素(問い)をデータ分 析の領域に置き換えられる⼈ 好奇⼼のある⼈ 新しい技術を必要に応じて⾝につけられる⼈ 統計詳しい⼈・実装⼒ある⼈・お⾦を儲けることに興 味がある⼈ 前向きでコミュニケーション能⼒が⾼い⼈ 整備されてないデータを探索しつつ、アウトプットを 素早く出せるスキルと、必要ないことは断れる性格 ⾃分の役割をどんどん広げて仕事を作り出せる⼈ 統計や分析をうまく使えて、かつ主体的に動いて仕事 を作れる⽅ 知的好奇⼼のあるひと 様々な課題をデータ分析の領域に落とし込む能⼒を 持っている⼈
LINEでやるデータサイエンスはおもしろい Data Science室に聞いてみました : LINEでデータサイエンスに関わる⾯⽩さ・やりがい(n=15) 単純にデータの種類や量が多いため、課題解決において ⾊々な選択肢がある ユーザの各サービスの⾏動ログは共通のIDに紐付けられ ているため、複数サービスを横断した分析ができる 国内でも最⼤規模のデータがあること
裁量をもって、スキルの⾼いメンバとともに、事業戦略 の意思決定に直接提案できるデータ分析ができる データ数の桁が違う、ユーザーが⾝近にいるのでやりが いを感じる 事業成⻑に積極的、経営陣のデータ活⽤に対する興味が ⾼い、ビッグデータを保有している ⾃分が毎⽇使うサービスについて分析ができ、それを改 善していくことができる 扱うデータが⼤きい・広い・深い 個⼈の裁量が⼤きい。サービスが成⻑段階にあるため、 ⾃由度が⾼い 仕事で関わるサービス = ⾃⾝が⽇常⽣活で接すること があるサービスであり、それの改善に関われる⾯⽩み プラットフォーマーとしての圧倒的な数のチカラ いろんなサービスのデータに触れられること、規模が⼤ きいサービスが多いこと 複数の海外拠点に影響するデータ分析プロジェクトを主 導できる 扱うデータが⼤きい データ分析で改善できる領域の多様さ
選考プロセスと求めるスキル
DS室で募集中のポジション Data Science室のオープンポジション データ サイエンティスト https://linecorp.com/ja/career/position/588 • ジュニア〜ミドル〜シニアまで幅広く募集 • 統計解析の知識は必須
• ⽇本語必須 ※ プロジェクトマネージャー・機械学習エンジニアの募集要項は別にあります
選考プロセス(説明は2022年4⽉時点、変更の可能性があります) 1回の課題と通常3回の⾯接を⾏う 書類選考 応募 課題選考 選考プロセス 説明 • データ分析職としての実務経験があるか •
数理統計などの技術的なバックグラウンドがあるか • SQL、Rなどの分析ツールの利⽤経験があるか • 書類選考と同様のポイントの深堀りに加えて、分析結果を わかりやすく伝えられるかどうか • 課題:データ(数⼗万件程度)と問題⽂をもとに、企画者 向けレポートを作成 あわせて1ヶ⽉ 〜1.5ヶ⽉ ⾯接 (3回〜) • LINEのデータサイエンティストに求める要件(次ページで 解説)を満たすかどうかを総合的に確認 選考プロセス 選考のポイント 所⽤期間の⽬安 • LINEの採⽤ページ(https://linecorp.com/ja/career/ja/all)より、希望の職種を選択して募 集要項をご確認ください。 • 募集要項ページ下部の「応募する」ボタンからご応募ください。 • 学歴および職務経歴がわかる書類を提出いただきます。
データサイエンティストの選考基準 ⼤きく3つの視点で選考を⾏う 問題 解決⼒ データ分析⼒ (=統計解析⼒、 データ分析の経験) ※配点が決まっているというよりは、これらの項⽬を総合的に考慮して選考しています 思考⼒ (=論理的思考⼒、
仮説思考⼒) • 複雑かつ⼤量なデータから必要⼗分な⽰唆を導くための能⼒ • 基礎的な統計解析⼒(分布、検定、回帰分析あたりのイメージ、 ⼊社後に適時にキャッチアップできるレベルは必須) • 未知の問題に対して、論理⽴てて結論を導くことができる能⼒ • 抽象的でない、具体的な道筋を描けるかどうか コミュニケーション⼒ 主体性・リーダーシップ 採⽤選考において重要な項⽬ 具体的に • 伝えたいことを、わかりやすく論理的に伝えられる能⼒ • 分析結果を根拠に、相⼿に明確なアクションを促すための能⼒ • 上司や周囲の指⽰を待つのではなく、⾃分でやるべきこと、やり たいことを考え、適切に主張し、実⾏するための能⼒ • LINE社へのカルチャーフィット
参考資料 • Data Scienceセンター Data Science室 参考情報⼀覧 https://linecorp.com/ja/career/lp/media/data-science
(参考)事業部側に所属する データアナリストを募集している Data Science室以外のデータ分析系オープンポジション データアナリスト https://linecorp.com/ja/career/position/1536 • より事業に近いところで業務を⾏うポジション • ジュニア〜ミドル〜シニアまで幅広く募集
• 事業部ごとに複数のポジションを募集 • 基礎的な統計は必須ではないが、ビジネス貢献を強く求める 各事業部
データアナリストの選考プロセス(説明は2022年4⽉時点、変更の可能性があります) (参考)データアナリストの選考では、共通課題のあと 希望ポジションごとに個別に選考を進める 書類・課題選考 ※各ポジション 共通 応募 ⾯接(通常2−3回) ※各ポジション 個別
選考プロセス 説明 • 課題:SQLスキルテスト(30min)、データと課題を提供し て簡易レポート提出(90min)、いずれもWeb上で実施 • SQLスキル、分析スキル、分析経験を総合的に判断 • データアナリストの募集要項ページ(https://linecorp.com/ja/career/position/1536) をご確認ください。 • 募集要項ページ下部の「応募する」ボタンからご応募ください。 • 課題は共通ですが、⾯接以降の選考はポジションごとに個別に実施します。 応募前に、優先度の⾼いポジションを3つ選択していただきます。 • 学歴および職務経歴がわかる書類を提出いただきます。 • 応募時に選考を希望した事業部と個別に実施 ※選考基準や求める⼈物要件も事業部ごとに異なります 選考プロセス 選考のポイント ※全て必須ではなく、総合的に判断します 所⽤期間の⽬安 あわせて1ヶ⽉ 〜1.5ヶ⽉
LINEのデータ分析職についてもっと詳しく知りたい⽅へ Data Science室では、カジュアル⾯談を随時実施しています。⾯談をご希望の⽅ は、レジュメを添付のうえ以下の宛先までご連絡ください。本資料に関する質問 やお問い合わせも、こちらまでお寄せください。 採⽤お問い合わせ窓⼝
[email protected]
THANK YOU