Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
270
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
34
Is Your Open-source LLM Really Open?
marcobonzanini
0
41
Perambulations in Football Analytics
marcobonzanini
0
31
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
87
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
110
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
250
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
200
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
100
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
110
Other Decks in Science
See All in Science
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
400
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
190
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.8k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
550
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
760
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
520
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
280
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
510
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
490
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
160
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
830
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Done Done
chrislema
184
16k
For a Future-Friendly Web
brad_frost
179
9.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Bash Introduction
62gerente
613
210k
Designing for humans not robots
tammielis
253
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None