Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Brewing Beer with Python
Search
Marco Bonzanini
December 04, 2018
Science
2
280
Brewing Beer with Python
Lightning talk on using Artificial Intelligence to generate beer recipes
Marco Bonzanini
December 04, 2018
Tweet
Share
More Decks by Marco Bonzanini
See All by Marco Bonzanini
Pitfalls in Data Science Projects (and how to avoid them)
marcobonzanini
0
53
Is Your Open-source LLM Really Open?
marcobonzanini
0
63
Perambulations in Football Analytics
marcobonzanini
0
44
Natural Language Processing Expert Briefing @ PyData Global 2022
marcobonzanini
0
95
Natural Language Processing Expert Briefing @ PyData Global 2021
marcobonzanini
0
120
Getting into Data Science @ HisarCS 2021
marcobonzanini
0
270
Mining topics in documents with topic modelling and Python @ London Python meetup
marcobonzanini
1
210
Topic Modelling workshop @ PyCon UK 2019
marcobonzanini
2
120
Lies, Damned Lies, and Statistics @ PyCon UK 2019
marcobonzanini
0
140
Other Decks in Science
See All in Science
Lean4による汎化誤差評価の形式化
milano0017
1
380
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
440
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
凸最適化からDC最適化まで
santana_hammer
1
330
データベース02: データベースの概念
trycycle
PRO
2
980
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
140
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
370
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
550
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
200
データベース03: 関係データモデル
trycycle
PRO
1
310
Featured
See All Featured
Site-Speed That Sticks
csswizardry
13
990
Git: the NoSQL Database
bkeepers
PRO
432
66k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Code Reviewing Like a Champion
maltzj
527
40k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Rails Girls Zürich Keynote
gr2m
95
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
Brewing Beer with Python @MarcoBonzanini @PyDataLondon
Python + Beer = Over-engineering
MALT WATER HOPS YEAST
1.Mashing (grains + water) 2.Boiling (+ hops) 3.Cooling 4.Fermentation (+
yeast)
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
Grain bill: 2Kg Pilsner malt 1Kg Pale malt 1Kg Wheat
malt 1Kg Wheat flakes 0.5Kg Munich malt 0.5Kg Oat flakes Mash: 30m at 55C 60m at 67C 15m at 75C Boil: 40g Magnum @ 60m 40g Mosaic @ 10m 20g Coriander seeds @ 10m In fermenter: 5 gallons Fermentation: 2 weeks at 20C Yeast: M21 OG: 1.059 FG: 1.015 IBU: 64
None
None
Recipe URLs XML Recipes Text Recipes requests pybeerxml
Neural Networks
Recurrent Neural Networks (RNN) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
RNN unrolled http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Long Short Term Memory (LSTM) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
None
None