Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Onia P&P

Sasha Mazurov
September 20, 2013

Onia P&P

20, September

Sasha Mazurov

September 20, 2013
Tweet

More Decks by Sasha Mazurov

Other Decks in Research

Transcript

  1. Motivation b¯ b system, which can be produced in different

    spin configurations, is ideal laboratory for QCD tests. It’s like a hydrogen atom in QCD. Measured mass Mass from theory States with parallel quark spins (S=1): S-wave Υ state. P-wave χb states, composed by 3 spin states χb(1,2,3) . Υ can be readily produced in the radiactive decays of χb. χb (3P) state recently observed by ATLAS, D0 and LHCb. Study of χb production: 1 Measurement for Υ(NS) (N=1, 2, 3) cross sections in χb decays as a function of pT (NΥ) 2 Measurement of χb(0,1,2) (3P) mass. 2/33
  2. Content 1 Data sets 2 Determination of Υ yields 3

    Determination of χb yields in the following decays χb (1, 2, 3P) → Υ(1S) χb (2, 3P) → Υ(2S) χb (3P) → Υ(3S) 4 Monte-Carlo efficiencies 5 The fraction of Υ originating from χb decays. 3/33
  3. Data sets Real data: Energy Reconstruction Stripping MDST Luminosity √

    s =7 TeV (2011) Reco14 Stripping20r1 WGBandQSelection4-1 1089 pb−1 √ s =8 TeV (2012) Reco14 Stripping20 WGBandQSelection4-1 2011 pb−1 Monte-Carlo (MC11a): Inclusive decay Event Type Magnet polarity Generated events χb1(1P) → Υγ 1812261 MagDown 516,000 MagUp 519,000 χb2(1P) → Υγ 1812271 MagDown 505,000 MagUp 518,000 χb1(2P) → Υγ 1822262 MagDown 506,500 MagUp 519,000 χb2(2P) → Υγ 1822272 MagDown 504,000 MagUp 519,500 χb1(3P) → Υγ 1822263 MagDown 518,500 MagUp 509,000 χb2(3P) → Υγ 1822273 MagDown 520,000 MagUp 516,500 4/33
  4. The Υ selection Description Requirement µ track fit quality χ2/ndf

    < 4 Muon and hadron hypotheses ∆ log Lµ−h > 0 Muon probability ProbNN > 0.5 Trigger lines: L0 (Muon|DiMuon).*Decision HLT1 (DiMuon|SingleMuonHighPT|MuonTrack).*Decision HLT2 (DiMuon|SingleMuonHighPT).*Decision 5/33
  5. The Υ fit model 9 10 11 0 50 100

    150 200 250 300 3 10 × Candidates/(40 MeV/c2) √ s = 8 GeV m(µ+µ−) GeV/c2 3 CB for signal yields. Product of exponential and linear compination of basic Bernstein polinomials for combinatorial background. Υ(1S) transverse momentum intervals pT (Υ) > 6 GeV/c √ s = 7 TeV √ s = 8 TeV NΥ(1S) 289,900 ± 600 677,600 ± 1000 NΥ(2S) 88,900 ± 400 207,700 ± 600 NΥ(3S) 51,660 ± 330 118,200 ± 500 B 545,000 ± 1000 1,268,700 ± 1400 µΥ(1S) , MeV/c2 9469.15 ± 0.11 9469.23 ± 0.07 ∆mΥ(2S) , MeV/c2 561.94 ± 0.26 561.93 ± 0.18 ∆mΥ(3S) , MeV/c2 896.2 ± 0.4 895.18 ± 0.27 σΥ(1S) , MeV/c2 46.80 ± 0.10 47.66 ± 0.06 α 1.28 1.28 n 4.0 4.0 τ 0.199 ± 0.009 -0.4162 ± 0.0013 c0 -1.453 ± 0.007 3.14150 ± 0.00016 c1 -3.1415 ± 0.0033 -3.14150 ± 0.00011 Good agreement between yields and mass values. 6/33
  6. Υ yields 10 15 20 25 30 0 5000 10000

    15000 20000 25000 30000 35000 40000 10 15 20 25 30 0 50 100 150 200 250 3 10 × 10 15 20 25 30 0 10000 20000 30000 40000 50000 60000 70000 √ s =7 TeV, √ s =8 TeV Candidates pT (Υ) [ GeV/c] Υ(3S) Candidates pT (Υ) [ GeV/c] Υ(1S) Candidates pT (Υ) [ GeV/c] Υ(2S) 7/33
  7. χb selection Cuts on γ: Transverse momentum of γ pT

    (γ) > 600 MeV/c Polar angle of γ in the µ+µ−γ rest frame cos θγ > 0 Confidence level of γ cl(γ) > 0.01 Dimuon mass windows: Decay Cut Description χb(1, 2, 3P) → Υ(1S) 9310 < µ+µ− < 9600 MeV/c 3σΥ(1S) < µ+µ− < 2.5σΥ(1S) MeV/c χb(2, 3P) → Υ(2S) 9870 < µ+µ− < 10090 MeV/c 3σΥ(2S) < µ+µ− < σΥ(2S) MeV/c χb(3P) → Υ(3S) 10300 < µ+µ− < 10526 MeV/c σΥ(3S) < µ+µ− < 3σΥ(3S) MeV/c 8/33
  8. χb1,2 (1, 2, 3P) → Υ(1S) fit model 10 10.5

    0 500 1000 1500 2000 2500 -4 -2 0 2 4 10 10.5 0 200 400 600 800 1000 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− + 9.4603 GeV/c2 √ s = 8 GeV pT (Υ (1S)) > 14 GeV/c Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− + 9.4603 GeV/c2 √ s = 7 GeV pT (Υ (1S)) > 14 GeV/c 6 CB for each χb1,2(1, 2, 3P) signal (exclude the study of χb0 due to its low branching ratio) Product of exponential and linear compination of basic Bernstein polinomials for combinatorial background. 9/33
  9. χb1,2 (1, 2, 3P) → Υ(1S) fit model (2) Free

    parameters: µχb1(1P), yields and background parameters. Linked parameters for χb1 and χb2 signals: µχb2(jP ) = µχb1(jP ) + ∆mP DG χb2(jP ) , j=1,2 µχb2(3P ) = µχb1(3P ) + ∆mtheory χb2(3P ) Nχb = λNχb1 + (1 − λ)Nχb2 σχb2 = σχb1 Other linked parameters: µχb1(2P ) = µχb1(1P ) + ∆mP DG χb1(2P ) µχb1(3P ) = µχb1(1P ) + ∆mχb1(3P ) (∆mχb1(3P ) measured in this study) Fixed parameters from MC study: σχb1(1P ) , σχb1(2P ) σχb1(1P ) ,σχb1(3P ) σχb1(1P ) α and n parameters of CB. Υ(1S) transverse momentum intervals pT (Υ) > 14 GeV/c √ s = 7 TeV √ s = 8 TeV Nχb(1P) 1960 ± 70 4730 ± 120 Nχb(2P) 410 ± 40 930 ± 70 Nχb(3P) 154 ± 34 220 ± 50 B 9230 ± 120 24,870 ± 200 µχb1(1P) , MeV/c2 9890.9 ± 1.0 9891.6 ± 0.7 ∆mχb1(2P) , MeV/c2 363 ∆mχb1(3P) , MeV/c2 614 ∆mPDG χb2,1(1P) , MeV/c2 19.43 ∆mPDG χb2,1(2P) , MeV/c2 13.19 ∆mtheory χb2,1(2P) , MeV/c2 13.00 σχb1(1P) , MeV/c2 19.02 σχb2(1P) /σχb1(1P) , MeV/c2 1.05 σχb1(2P) /σχb1(1P) , MeV/c2 1.50 σχb1(3P) /σχb1(1P) , MeV/c2 2.00 λχb(1P) 0.6 λχb(2P) 0.5 λχb(3P) 0.5 αχb(1P) -1.10 αχb(2P) -1.10 αχb(3P) -1.25 nχb(1P) 5.0 nχb(2P) 5.0 nχb(3P) 5.0 τ -2.5 ± 0.5 -3.02 ± 0.30 c0 -0.10 ± 0.11 0.02 ± 0.06 c1 1.36 ± 0.04 0.25 ± 0.04 c2 - - c3 - - c4 - - χ2/n.d.f 1.2 1.5 Good agreement between µχb1(1P ) and value in PDG (9892 MeV/c2). 10/33
  10. Mass of χb1 (1P) in χb → Υ(1S)γ decay 10

    15 20 25 30 9.87 9.875 9.88 9.885 9.89 9.895 9.9 9.905 9.91 9.915 √ s =7 TeV, √ s =8 TeV √ s =7 TeV, √ s =8 TeV χb1(1P) mass GeV/c2 pT (Υ) [ GeV/c] The major cause of χb1(1P) mass floating in 10 MeV/c range can be the unknown fraction between Nχb1 and Nχb2 yields (λ parameter). We have only theoretical prediction for λ value. In this study the mass of χb1(1P) was fixed to 9891 MeV/c2. 11/33
  11. χb yields in χb → Υ(1S) decays 0 10 20

    30 0 50 100 150 200 250 300 350 400 450 0 10 20 30 0 1000 2000 3000 4000 5000 6000 7000 0 10 20 30 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ! Inconsistent yields √ s =7 TeV, √ s =8 TeV Candidates pT (Υ) [ GeV/c] χb(3P) Candidates pT (Υ) [ GeV/c] χb(1P) Candidates pT (Υ) [ GeV/c] χb(2P) 12/33
  12. χb1,2 (2, 3P) → Υ(2S) fit model 10.2 10.4 10.6

    10.8 11 0 100 200 300 400 500 600 -4 -2 0 2 4 10.2 10.4 10.6 10.8 11 0 20 40 60 80 100 120 140 160 180 200 220 240 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− + 10.02326 GeV/c2 √ s = 8 GeV pT (Υ (2S)) > 18 GeV/c Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− + 10.02326 GeV/c2 √ s = 7 GeV pT (Υ (2S)) > 18 GeV/c 4 CB for each χb1,2(2, 3P) Product of exponential and linear compination of basic Bernstein polinomials for combinatorial background. 13/33
  13. χb1,2 (2, 3P) → Υ(2S) fit model (2) Free parameters:

    µχb1(2P), yields and background parameters. Linked parameters for χb1 and χb2 signals: µχb2(2P ) = µχb1(2P ) + ∆mP DG χb2(2P ) µχb2(3P ) = µχb1(3P ) + ∆mtheory χb2(3P ) Nχb = λNχb1 + (1 − λ)Nχb2 σχb2 = σχb1 Other linked parameters: µχb1(3P ) = µχb1(1P ) + ∆mχb1(3P ) (∆mχb1(3P ) measured in this study) Fixed parameters from MC study: σχb1(2P ) , σχb1(3P ) σχb1(2P ) α and n parameters of CB. Υ(2S) transverse momentum intervals pT (Υ(2S)) > 18 GeV/c √ s = 7 TeV √ s = 8 TeV Nχb(2P) 185 ± 30 550 ± 50 Nχb(3P) 64 ± 19 93 ± 29 B 1800 ± 50 4590 ± 80 µχb1(2P) , MeV/c2 10,248.3 ± 2.3 10,250.4 ± 1.3 ∆mχb1(3P) , MeV/c2 252 ∆mPDG χb2,1(2P) , MeV/c2 13.19 ∆mχb2,1(3P) , MeV/c2 13.00 σχb1(2P) , MeV/c2 11.58 σχb1(3P) /σχb1(2P) , MeV/c2 1.84 λχb(2P) 0.5 λχb(3P) 0.5 αχb(2P) -1.10 αχb(3P) -1.25 nχb(2P) 5.0 nχb(3P) 5.0 τ -8.3 ± 2.9 -8.6 ± 1.2 c0 0.40 ± 0.06 0.392 ± 0.030 c1 -2.30 ± 0.30 -2.35 ± 0.10 c2 -2.6 ± 0.6 -2.67 ± 0.13 c3 0.3 ± 0.6 0.36 ± 0.24 c4 - - χ2/n.d.f 0.6 1.0 The mass of χb1(2P ) is about 5 MeV/c2 less than value in PDG (10.25546 MeV/c2). 14/33
  14. Mass of χb1 (2P) in χb → Υ(2S)γ decay 20

    25 30 35 40 10.235 10.24 10.245 10.25 10.255 10.26 √ s =7 TeV, √ s =8 TeV χb1(2P) mass GeV/c2 pT (Υ) [ GeV/c] In this study the mass of χb1(2P) was fixed to 10249 MeV/c2. 15/33
  15. χb yields in χb → Υ(2S) decays √ s =7

    TeV, √ s =8 TeV 20 25 30 35 40 0 100 200 300 400 500 20 25 30 35 40 0 20 40 60 80 100 120 140 Candidates pT (Υ) [ GeV/c] χb(2P) Candidates pT (Υ) [ GeV/c] χb(3P) Inconsistent yields in last bin for χb(3P). 16/33
  16. χb1,2 (3P) → Υ(3S) fit model 10.5 10.6 10.7 0

    10 20 30 40 50 -4 -2 0 2 4 10.5 10.6 10.7 0 2 4 6 8 10 12 14 16 18 20 22 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− + 10.3552 GeV/c2 √ s = 8 GeV pT (Υ (3S)) > 27 GeV/c Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− + 10.3552 GeV/c2 √ s = 7 GeV pT (Υ (3S)) > 27 GeV/c 2 CB for each χb1,2(3P) Product of exponential and linear compination of basic Bernstein polinomials for combinatorial background. 17/33
  17. χb1,2 (3P) → Υ(3S) fit model (2) Free parameters: µχb1(3P),

    yields and background parameters. Linked parameters for χb1 and χb2 signals: µχb2(3P ) = µχb1(3P ) + ∆mtheory χb2(3P ) Nχb = λNχb1 + (1 − λ)Nχb2 σχb2 = σχb1 Fixed parameters from MC study: σχb1(3P ) α and n parameters of CB. Υ(3S) transverse momentum intervals pT (Υ(3S)) > 27 GeV/c √ s = 7 TeV √ s = 8 TeV Nχb(3P) 34 ± 8 82 ± 14 B 114 ± 12 329 ± 21 µχb1(3P) , MeV/c2 10,514.5 ± 3.0 10,504.9 ± 2.2 ∆mχb2,1(3P) , MeV/c2 13.00 σχb1(3P) , MeV/c2 8.03 λχb(3P) 0.5 αχb(3P) -1.25 nχb(3P) 5.0 τ -8 ± 7 -4.8 ± 1.4 c0 0.62 ± 0.09 0.62 ± 0.08 c1 0.1 ± 0.6 -0.33 ± 0.12 χ2/n.d.f 0.6 0.8 In this study the mass of χb1(3P) was fixed to the value obtained from the fit performed on both datasets = 10507 MeV/c2 18/33
  18. MC efficiency (1) MC true events χb(3P) → Υ(1S)γ (other

    decays have the same shape) 0 0.5 1 1.5 2 0 500 1000 1500 2000 2500 Candidates mµ+µ−γ − mµ+µ− GeV/c2 The real data events in the flat left band could not be determined by the current fit model. So efficiency is calculated with χb mc-true events fitted by CB and some background. Υ events are measured by counting mc-true events. 19/33
  19. MC efficiency (2) χb(1P), χb(2P), χb(3P) reconstruction efficiency in χb

    → Υγ decays. 10 15 20 25 30 0 5 10 15 20 25 30 35 20 25 30 35 40 0 5 10 15 20 25 30 35 Efficiency (%) pT (Υ(1S)) GeV/c2 χb(1, 2, 3P ) → Υ (1S)γ Efficiency (%) pT (Υ(2S)) GeV/c2 χb(2, 3P ) → Υ (2S)γ 20/33
  20. The fraction of Υ(1S) originating from χb decays 10 15

    20 25 30 0 1 2 3 4 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 10 15 20 25 30 0 1 2 3 4 5 6 7 8 9 Fraction (%) pT (Υ(1S)) GeV/c2 χb(3P ) → Υ (1S)γ Fraction (%) pT (Υ(1S)) GeV/c2 χb(1P ) → Υ (1S)γ Fraction (%) pT (Υ(1S)) GeV/c2 χb(2P ) → Υ (1S)γ √ s =7 TeV, √ s =8 TeV 21/33
  21. The fraction of Υ(2S) originating from χb decays √ s

    =7 TeV, √ s =8 TeV 20 25 30 35 40 0 10 20 30 40 50 20 25 30 35 40 0 2 4 6 8 10 12 14 16 18 20 Fraction (%) pT (Υ(2S)) GeV/c2 χb(2P ) → Υ (2S)γ Fraction (%) pT (Υ(2S)) GeV/c2 χb(3P ) → Υ (2S)γ 22/33
  22. The fraction of Υ(3S) originating from χb decays √ s

    =7 TeV, √ s =8 TeV 30 35 40 30 40 50 60 70 80 90 100 Fraction(%) χb(3P ) → Υ (3S)γ pT (Υ (3S)) [ GeV/c] 23/33
  23. Summary Measured fractions of Υ(1, 2, 3S) originated from χb

    decays Measured mass of χb(3P) TODO Analysis note almost ready (next week will be ready for review). Measure systematic uncertainties due to Υ polarization. Measure systematic due to fit model (almost done). Analysis note draft: https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/ChiB2fb (not ready for review yet) 24/33
  24. χb (3P) mass determination (1) χb(1, 2, 3P) → Υ(1S)γ

    0.5 1 0 500 1000 1500 2000 2500 -4 -2 0 2 4 Candidates/(40 MeV/c2) m µ+µ−γ − m µ+µ− GeV/c2 √ s = 8 GeV data. 1 2 3 4 0 100 200 300 400 500 600 700 Candidates pT (γ) [ GeV/c] Background candidates distribution in pT (γ) range (from sPlot). Background can be reduced for χb (2,3P) signal by applying tighter cut on pT (γ) 26/33
  25. χb (3P) mass determination (2) pT (γ) > 1.3 GeV/c

    0.8 1 1.2 1.4 0 20 40 60 80 100 120 140 160 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− GeV/c2 √ s = 7 GeV data. 0.8 1 1.2 1.4 0 50 100 150 200 250 300 350 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− GeV/c2 √ s = 8 GeV data. √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 795.9 ± 3.1 795.9 ± 2.3 795.9 ± 1.8 795.2 ± 0.6 µχb1(3P) 1047 ± 7 1079 ± 10 1062 ± 6 1055.7 ± 0.7 Nχb(2P) 400 ± 40 850 ± 50 1250 ± 70 Nχb(3P) 169 ± 27 220 ± 40 370 ± 50 B 1560 ± 60 4510 ± 90 6090 ± 110 Bχb(3P) /Nχb(3P) 3.3 ± 0.7 6.1 ± 1.2 27/33
  26. χb (3P) mass determination (3) 0 1 2 3 4

    5 6 7 8 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Ratio N of primary vertices Normalized distribution of reconstructed primary vertices. Dark blue bar corresponds to √ s = 7 TeV data and light red bar corresponds to √ s = 8 TeV data. 28/33
  27. χb (3P) mass determination (4) pT (γ) > 1.3 GeV/c,

    Npv = 2 0.8 1 1.2 1.4 0 10 20 30 40 50 60 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− GeV/c2 √ s = 7 GeV data. 0.8 1 1.2 1.4 0 20 40 60 80 100 120 140 -4 -2 0 2 4 Candidates/(20 MeV/c2) m µ+µ−γ − m µ+µ− GeV/c2 √ s = 8 GeV data. √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 787 ± 6 794 ± 4 792.2 ± 3.2 795.2 ± 0.6 µχb1(3P) 1069 ± 13 1071 ± 9 1070 ± 7 1055.7 ± 0.7 Nχb(2P) 132 ± 21 311 ± 34 440 ± 40 Nχb(3P) 57 ± 16 134 ± 25 191 ± 30 B 603 ± 35 1610 ± 60 2210 ± 70 Bχb(3P) /Nχb(3P) 3.7 ± 1.3 3.8 ± 0.9 Consistent peak position of χb(3P) signal for 7 TeV and 8 TeV data. 29/33
  28. χb (3P) mass determination (5) pT (γ) > 1.3 GeV/c

    Npv = 1 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 797 ± 4 794 ± 4 795.2 ± 2.8 795.2 ± 0.6 µχb1(3P) 1041 ± 10 1061 ± 19 1047 ± 10 1055.7 ± 0.7 Nχb(2P) 150 ± 20 239 ± 26 396 ± 33 Nχb(3P) 47 ± 13 58 ± 18 106 ± 22 B 340 ± 28 780 ± 40 1110 ± 50 Bχb(2P) /Nχb(2P) 1.55 ± 0.33 1.78 ± 0.30 1.79 ± 0.23 Bχb(3P) /Nχb(3P) 2.4 ± 0.9 4.9 ± 1.9 3.5 ± 0.9 Npv > 2 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 803 ± 7 799 ± 4 799.9 ± 3.2 795.2 ± 0.6 µχb1(3P) 1041 ± 11 1100 ± 50 1049 ± 15 1055.7 ± 0.7 Nχb(2P) 91 ± 18 304 ± 31 390 ± 40 Nχb(3P) 54 ± 14 23 ± 20 75 ± 27 B 426 ± 30 1620 ± 50 2050 ± 60 Bχb(2P) /Nχb(2P) 2.6 ± 0.7 2.14 ± 0.32 2.9 ± 0.4 Bχb(3P) /Nχb(3P) 2.7 ± 1.0 17 ± 17 8.7 ± 3.5 30/33
  29. χb (3P) mass determination (6) Npv <= 2 √ s

    = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 796.8 ± 3.5 793.5 ± 2.6 794.6 ± 2.1 795.2 ± 0.6 µχb1(3P) 1054 ± 8 1071 ± 9 1063 ± 6 1055.7 ± 0.7 Nχb(2P) 266 ± 28 530 ± 40 800 ± 50 Nχb(3P) 97 ± 19 176 ± 29 274 ± 35 B 840 ± 40 2120 ± 70 2950 ± 80 Bχb(2P) /Nχb(2P) 1.95 ± 0.31 1.97 ± 0.22 2.00 ± 0.18 Bχb(3P) /Nχb(3P) 2.9 ± 0.8 3.8 ± 0.8 3.4 ± 0.6 Npv <= 3 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 798.6 ± 3.4 795.2 ± 2.2 796.2 ± 1.8 795.2 ± 0.6 µχb1(3P) 1049 ± 6 1071 ± 9 1058 ± 5 1055.7 ± 0.7 Nχb(2P) 332 ± 32 730 ± 50 1090 ± 60 Nχb(3P) 143 ± 23 212 ± 34 350 ± 40 B 1120 ± 50 3080 ± 80 4190 ± 90 Bχb(2P) /Nχb(2P) 2.06 ± 0.29 2.01 ± 0.19 1.90 ± 0.15 Bχb(3P) /Nχb(3P) 2.6 ± 0.6 4.5 ± 0.9 4.0 ± 0.6 31/33
  30. χb (3P) mass determination. hSPD cuts 2011, 2012 0 200

    400 600 800 0 0.01 0.02 0.03 0.04 0.05 0.06 Ratio SPD hits (hSPD) hSPD < 300 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 795 ± 4 792.5 ± 2.9 793.3 ± 2.3 795.2 ± 0.6 µχb1(3P) 1056 ± 9 1069 ± 10 1063 ± 7 1055.7 ± 0.7 Nχb(2P) 201 ± 22 375 ± 31 580 ± 40 Nχb(3P) 78 ± 15 108 ± 21 186 ± 26 B 445 ± 32 1030 ± 50 1470 ± 60 Bχb(2P) /Nχb(2P) 1.36 ± 0.26 1.54 ± 0.21 1.50 ± 0.16 Bχb(3P) /Nχb(3P) 2.0 ± 0.6 3.1 ± 0.8 2.6 ± 0.5 hSPD < 400 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 795.1 ± 3.4 793.0 ± 2.3 793.7 ± 1.9 795.2 ± 0.6 µχb1(3P) 1055 ± 8 1073 ± 9 1065 ± 6 1055.7 ± 0.7 Nχb(2P) 273 ± 27 580 ± 40 850 ± 50 Nχb(3P) 102 ± 19 167 ± 27 269 ± 33 B 730 ± 40 1860 ± 60 2590 ± 70 Bχb(2P) /Nχb(2P) 1.74 ± 0.27 1.62 ± 0.18 1.72 ± 0.15 Bχb(3P) /Nχb(3P) 2.6 ± 0.7 3.5 ± 0.7 3.1 ± 0.5 hSPD < 600 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 797.7 ± 3.2 794.2 ± 2.2 795.3 ± 1.8 795.2 ± 0.6 µχb1(3P) 1050 ± 7 1072 ± 9 1061 ± 6 1055.7 ± 0.7 Nχb(2P) 336 ± 32 770 ± 50 1110 ± 60 Nχb(3P) 136 ± 23 206 ± 34 340 ± 40 B 1130 ± 50 3170 ± 80 4300 ± 90 Bχb(2P) /Nχb(2P) 2.04 ± 0.29 1.94 ± 0.18 2.03 ± 0.16 Bχb(3P) /Nχb(3P) 2.8 ± 0.6 4.7 ± 0.9 3.9 ± 0.6 32/33
  31. χb (3P) mass determination. Number of tracks. 2011, 2012 0

    50 100 150 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Ratio Number of tracks (nLong) nLong < 40 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 795 ± 4 791.8 ± 2.8 792.8 ± 2.3 795.2 ± 0.6 µχb1(3P) 1056 ± 9 1073 ± 11 1067 ± 7 1055.7 ± 0.7 Nχb(2P) 215 ± 23 396 ± 32 590 ± 40 Nχb(3P) 87 ± 16 91 ± 20 176 ± 27 B 456 ± 33 1080 ± 50 1550 ± 60 Bχb(2P) /Nχb(2P) 1.46 ± 0.26 1.64 ± 0.22 1.49 ± 0.16 Bχb(3P) /Nχb(3P) 2.0 ± 0.6 3.2 ± 0.9 3.1 ± 0.6 nLong < 70 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 797.1 ± 3.2 793.5 ± 2.3 794.6 ± 1.8 795.2 ± 0.6 µχb1(3P) 1056 ± 7 1073 ± 9 1065 ± 6 1055.7 ± 0.7 Nχb(2P) 326 ± 30 680 ± 40 1010 ± 50 Nχb(3P) 129 ± 21 182 ± 30 310 ± 40 B 940 ± 50 2420 ± 70 3360 ± 80 Bχb(2P) /Nχb(2P) 1.76 ± 0.25 1.77 ± 0.18 1.78 ± 0.15 Bχb(3P) /Nχb(3P) 2.5 ± 0.6 4.0 ± 0.8 3.4 ± 0.5 nLong < 100 √ s = 7 TeV √ s = 8 TeV √ s = 7 and 8 TeV PDG µχb1(2P) 798.1 ± 3.2 793.7 ± 2.2 795.1 ± 1.8 795.2 ± 0.6 µχb1(3P) 1050 ± 6 1076 ± 9 1062 ± 6 1055.7 ± 0.7 Nχb(2P) 343 ± 33 770 ± 50 1120 ± 60 Nχb(3P) 144 ± 23 206 ± 34 350 ± 40 B 1140 ± 50 3150 ± 80 4280 ± 90 Bχb(2P) /Nχb(2P) 2.09 ± 0.29 1.90 ± 0.18 2.10 ± 0.16 Bχb(3P) /Nχb(3P) 2.7 ± 0.6 4.6 ± 0.9 3.8 ± 0.6 33/33