Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
250
Other Decks in Programming
See All in Programming
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
460
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
Data-Centric Kaggle
isax1015
2
770
CSC307 Lecture 06
javiergs
PRO
0
690
CSC307 Lecture 03
javiergs
PRO
1
490
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
AtCoder Conference 2025
shindannin
0
1.1k
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
Package Management Learnings from Homebrew
mikemcquaid
0
220
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
66
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
320
The browser strikes back
jonoalderson
0
370
Optimizing for Happiness
mojombo
379
71k
Agile that works and the tools we love
rasmusluckow
331
21k
Test your architecture with Archunit
thirion
1
2.2k
The Limits of Empathy - UXLibs8
cassininazir
1
210
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
YesSQL, Process and Tooling at Scale
rocio
174
15k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
How to Ace a Technical Interview
jacobian
281
24k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.