Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
230
Other Decks in Programming
See All in Programming
DMMを支える決済基盤の技術的負債にどう立ち向かうか / Addressing Technical Debt in Payment Infrastructure
yoshiyoshifujii
4
670
AIのメモリー
watany
11
1.1k
型で語るカタ
irof
1
880
コーディングエージェント概観(2025/07)
itsuki_t88
0
460
フロントエンドのパフォーマンスチューニング
koukimiura
6
2.3k
「次に何を学べばいいか分からない」あなたへ──若手エンジニアのための学習地図
panda_program
3
680
Reactの歴史を振り返る
tutinoko
1
150
ZeroETLで始めるDynamoDBとS3の連携
afooooil
0
130
MCPで実現できる、Webサービス利用体験について
syumai
7
2.2k
[DevinMeetupTokyo2025] コード書かせないDevinの使い方
takumiyoshikawa
2
230
AIコーディングエージェント全社導入とセキュリティ対策
hikaruegashira
15
8.8k
[SRE NEXT] 複雑なシステムにおけるUser Journey SLOの導入
yakenji
1
850
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
How GitHub (no longer) Works
holman
314
140k
Balancing Empowerment & Direction
lara
1
510
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Six Lessons from altMBA
skipperchong
28
3.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
4 Signs Your Business is Dying
shpigford
184
22k
Designing Experiences People Love
moore
142
24k
Building an army of robots
kneath
306
45k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.