Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
230
Other Decks in Programming
See All in Programming
AIと私たちの学習の変化を考える - Claude Codeの学習モードを例に
azukiazusa1
10
4.4k
Laravel Boost 超入門
fire_arlo
3
220
チームのテスト力を鍛える
goyoki
3
830
AI時代のUIはどこへ行く?
yusukebe
18
9k
Improving my own Ruby thereafter
sisshiki1969
1
160
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
1.8k
テストコードはもう書かない:JetBrains AI Assistantに委ねる非同期処理のテスト自動設計・生成
makun
0
470
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
3.3k
Amazon RDS 向けに提供されている MCP Server と仕組みを調べてみた/jawsug-okayama-2025-aurora-mcp
takahashiikki
1
110
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
22
5.9k
AI Coding Agentのセキュリティリスク:PRの自己承認とメルカリの対策
s3h
0
230
実用的なGOCACHEPROG実装をするために / golang.tokyo #40
mazrean
1
290
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Speed Design
sergeychernyshev
32
1.1k
A Tale of Four Properties
chriscoyier
160
23k
RailsConf 2023
tenderlove
30
1.2k
Large-scale JavaScript Application Architecture
addyosmani
513
110k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Navigating Team Friction
lara
189
15k
Why Our Code Smells
bkeepers
PRO
339
57k
Writing Fast Ruby
sferik
628
62k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.