Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
250
Other Decks in Programming
See All in Programming
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
710
Basic Architectures
denyspoltorak
0
670
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
Grafana:建立系統全知視角的捷徑
blueswen
0
330
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
700
dchart: charts from deck markup
ajstarks
3
990
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
Architectural Extensions
denyspoltorak
0
290
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
100
高速開発のためのコード整理術
sutetotanuki
1
400
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
130
MUSUBIXとは
nahisaho
0
130
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
Paper Plane
katiecoart
PRO
0
46k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Optimizing for Happiness
mojombo
379
71k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
82
YesSQL, Process and Tooling at Scale
rocio
174
15k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
Docker and Python
trallard
47
3.7k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.