Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
250
Other Decks in Programming
See All in Programming
AgentCoreとHuman in the Loop
har1101
5
240
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
170
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
280
並行開発のためのコードレビュー
miyukiw
0
160
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
180
CSC307 Lecture 01
javiergs
PRO
0
690
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.1k
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
700
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.5k
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Paper Plane
katiecoart
PRO
0
46k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
YesSQL, Process and Tooling at Scale
rocio
174
15k
Skip the Path - Find Your Career Trail
mkilby
0
56
Building Flexible Design Systems
yeseniaperezcruz
330
40k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Become a Pro
speakerdeck
PRO
31
5.8k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.