$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
250
Other Decks in Programming
See All in Programming
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
250
ハイパーメディア駆動アプリケーションとIslandアーキテクチャ: htmxによるWebアプリケーション開発と動的UIの局所的適用
nowaki28
0
420
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.3k
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
730
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Cap'n Webについて
yusukebe
0
140
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
120
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
120
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
360
React Native New Architecture 移行実践報告
taminif
1
160
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
270
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
2.9k
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
304
21k
How STYLIGHT went responsive
nonsquared
100
6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
[SF Ruby Conf 2025] Rails X
palkan
0
540
Done Done
chrislema
186
16k
Embracing the Ebb and Flow
colly
88
4.9k
Automating Front-end Workflow
addyosmani
1371
200k
GitHub's CSS Performance
jonrohan
1032
470k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.