Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Turi Create and Concept Behind Image Classifica...
Search
Merocode
February 14, 2018
Programming
1
140
Turi Create and Concept Behind Image Classification
CocoaHead Berlin
Merocode
February 14, 2018
Tweet
Share
More Decks by Merocode
See All by Merocode
Core ML Overview
merocode
0
240
Other Decks in Programming
See All in Programming
コードとあなたと私の距離 / The Distance Between Code, You, and I
hiro_y
0
170
Serena MCPのすすめ
wadakatu
4
1k
ALL CODE BASE ARE BELONG TO STUDY
uzulla
25
6k
2分台で1500examples完走!爆速CIを支える環境構築術 - Kaigi on Rails 2025
falcon8823
3
3.7k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
370
XP, Testing and ninja testing ZOZ5
m_seki
3
670
NixOS + Kubernetesで構築する自宅サーバーのすべて
ichi_h3
0
900
Building, Deploying, and Monitoring Ruby Web Applications with Falcon (Kaigi on Rails 2025)
ioquatix
4
2.2k
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
120
Server Side Kotlin Meetup vol.16: 内部動作を理解して ハイパフォーマンスなサーバサイド Kotlin アプリケーションを書こう
ternbusty
3
190
Introducing ReActionView: A new ActionView-Compatible ERB Engine @ Kaigi on Rails 2025, Tokyo, Japan
marcoroth
3
1k
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
1k
Featured
See All Featured
Writing Fast Ruby
sferik
629
62k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Designing Experiences People Love
moore
142
24k
A designer walks into a library…
pauljervisheath
209
24k
Building Applications with DynamoDB
mza
96
6.7k
The Cult of Friendly URLs
andyhume
79
6.6k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
We Have a Design System, Now What?
morganepeng
53
7.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Practical Orchestrator
shlominoach
190
11k
Transcript
TURI CREATE CONCEPT BEHIND IMAGE CLASSIFICATION
WHAT WE WANT TO ACHIEVE?
None
None
CORE ML
INFERENCE
None
FROM WHERE WE GET THE CORE ML FORMAT MODELS?
> Apple ready-to-use Core ML Models.
> Apple tool (Python Package) to convert known model formats
to Core ML model format. That is covered in that blog post
import coremltools caffe_model = ('EmotiW_VGG_S.caffemodel', 'deploy.prototxt') labels = 'labels.txt' coreml_model
= coremltools.converters.caffe.convert(caffe_model, class_labels=labels, image_input_names='data') coreml_model.save('EmotiW_VGG_S.mlmodel')
WHAT IS A MODEL?
TRAINING
TURI CREATE
> Under the hood of Turi Create is Apache’s MXNet
> Python 2.7, 3.5, 3.6 conda create -n turi python=3.6 source activate turi pip install -U turicreate import turicreate fails on macOS 10.12.6 conda create -n turi python=2.7 pip install -Iv turicreate==4.0
CONVOLUTIONAL NEURAL NETWORKS CNN MODEL Feature extraction part + Classification
part
None
None
None
None
None
None
None
VISUALIZING FEATURE / ACTIVATION MAPS
TRANSFER LEARNING
None
CREATE AND TRAIN A MODEL USING TURI CREATE
SQUEEZENET_V1.1
None
None
None
None
None
15 min.
44 min.
ResNet50
9 min.
17 min.
66 min.
IMAGE AUGMENTATION Invariant Representation Scale Rotation Translation
None
RESOURCES CODE Turi Create Sample Code and Demo Apps
RESOURCES TOOLS Turi Create Anaconda Miniconda
RESOURCES APPLE Turi Create User Guide Turi Create API Documentation
Sample Code: Classifying Images with Vision and Core ML Apple Machine Learning
RESOURCES ARTICLES Convolutional Neural Networks Image Augmentation in Keras
RESOURCES PHOTOS Photo by Gift Habeshaw on Unsplash Elon Musk
SpaceX launch footage
THANK YOU ❤ @_MeroCode_ LET’S LEARN ABOUT MACHINE LEARNING.