Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
320
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
280
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
160
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
190
Python and Life Hacking with Emacs
mfcabrera
2
330
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
270
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
5
4.1k
Javaで作る RAGを活用した Q&Aアプリケーション
recruitengineers
PRO
1
120
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
160
WordPressから ヘッドレスCMSへ! Storyblokへの移行プロセス
nyata
0
130
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
340
フィンテック養成勉強会#54
finengine
0
180
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
26k
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
570
Understanding_Thread_Tuning_for_Inference_Servers_of_Deep_Models.pdf
lycorptech_jp
PRO
0
140
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
11
4k
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
360
Github Copilot エージェントモードで試してみた
ochtum
0
110
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Building Adaptive Systems
keathley
43
2.6k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Gamification - CAS2011
davidbonilla
81
5.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight