Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
270
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
230
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
110
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
140
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.1k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
170
Python and Life Hacking with Emacs
mfcabrera
2
290
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.8k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
210
Dictionary Learning for Music Genre Recognition
mfcabrera
0
240
Other Decks in Technology
See All in Technology
20240912 JJUGナイトセミナー
mii1004
0
140
eBPFのこれまでとこれから
yutarohayakawa
9
3.2k
なにもしてないのにNew Relicのデータ転送量が増えていたときに確認したこと
tk3fftk
2
220
AI活用したくてもできなかった不動産SaaSの今とこれから
nealle
0
330
AWS SAW を広めたい @四国クラウドお遍路
kazzpapa3
0
230
四国のあのイベントの〇〇システムを45日間で構築した話 / cloudohenro2024_tachibana
biatunky
0
330
なぜクラウドサービスで Web コンソールを提供するのか
shuta13
4
2k
Agile in Automotive Industry, puzzles and lights.
hiranabe
3
1.3k
疎通2024
sadnessojisan
5
1k
エンジニア視点で見る、 組織で運用されるデザインシステムにするには
shunya078
1
310
不動産tech Product Night#2_AIことはじめ_GA橋本
takehikohashimoto
0
180
DuckDB雑紹介(1.1対応版)@DuckDB座談会
ktz
6
1.4k
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
294
20k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
41
6.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
1
48
The Invisible Side of Design
smashingmag
295
50k
The Cult of Friendly URLs
andyhume
76
6k
The Invisible Customer
myddelton
119
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
225
22k
Statistics for Hackers
jakevdp
794
220k
ParisWeb 2013: Learning to Love: Crash Course in Emotional UX Design
dotmariusz
109
6.9k
Into the Great Unknown - MozCon
thekraken
29
1.4k
GitHub's CSS Performance
jonrohan
1030
450k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
23
1.7k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight