Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
310
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
140
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
180
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.3k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
210
Python and Life Hacking with Emacs
mfcabrera
2
360
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
2k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
310
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
950
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
ソフトとハード両方いけるデータ人材の育て方
waiwai2111
1
470
形式手法特論:コンパイラの「正しさ」は証明できるか? #burikaigi / BuriKaigi 2026
ytaka23
17
6.2k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
AI との良い付き合い方を僕らは誰も知らない (WSS 2026 静岡版)
asei
1
340
WebDriver BiDi 2025年のふりかえり
yotahada3
1
160
AI Agent Agentic Workflow の可観測性 / Observability of AI Agent Agentic Workflow
yuzujoe
4
2.1k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.6k
迷わない!AI×MCP連携のリファレンスアーキテクチャ完全ガイド
cdataj
0
570
善意の活動は、なぜ続かなくなるのか ーふりかえりが"構造を変える判断"になった半年間ー
matsukurou
0
560
The Engineer with a Three-Year Cycle
e99h2121
0
150
Featured
See All Featured
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
44
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Ethics towards AI in product and experience design
skipperchong
1
170
Fireside Chat
paigeccino
41
3.8k
Docker and Python
trallard
47
3.7k
Designing Experiences People Love
moore
143
24k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
260
Odyssey Design
rkendrick25
PRO
0
460
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
890
What's in a price? How to price your products and services
michaelherold
246
13k
BBQ
matthewcrist
89
10k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight