Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
320
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
290
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
130
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
170
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
200
Python and Life Hacking with Emacs
mfcabrera
2
340
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
290
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
バイブコーディングと継続的デプロイメント
nwiizo
2
380
pprof vs runtime/trace (FlightRecorder)
task4233
0
150
Findy Team+のSOC2取得までの道のり
rvirus0817
0
300
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
180
非同期処理実行基盤 Delayed脱出 → Solid Queue完全移行への旅路。
srockstyle
3
1.6k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9k
analysis パッケージの仕組みの上でMulti linter with configを実現する / Go Conference 2025
k1low
1
260
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
240
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
130
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
23
16k
Goに育てられ開発者向けセキュリティ事業を立ち上げた僕が今向き合う、AI × セキュリティの最前線 / Go Conference 2025
flatt_security
0
320
GA technologiesでのAI-Readyの取り組み@DataOps Night
yuto16
0
260
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
GitHub's CSS Performance
jonrohan
1032
460k
Designing Experiences People Love
moore
142
24k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Unsuck your backbone
ammeep
671
58k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
How to train your dragon (web standard)
notwaldorf
96
6.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Context Engineering - Making Every Token Count
addyosmani
4
160
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight