Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
290
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
250
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
110
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
150
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.1k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
180
Python and Life Hacking with Emacs
mfcabrera
2
310
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.8k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
240
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
現実的なCompose化戦略 ~既存リスト画面の置き換え~
sansantech
PRO
0
160
AWSエンジニアに捧ぐLangChainの歩き方
tsukuboshi
0
220
もし今からGraphQLを採用するなら
kazukihayase
9
4.2k
エラーバジェット枯渇の原因 - 偽陽性との戦い -
phaya72
1
100
private spaceについてあれこれ調べてみた
operando
1
170
20250125_Agent for Amazon Bedrock試してみた
riz3f7
2
110
Redmineの意外と知らない便利機能 (Redmine 6.0対応版)
vividtone
0
190
HCP TerraformとAzure:イオンスマートテクノロジーのインフラ革新 / HCP Terraform and Azure AEON Smart Technology's Infrastructure Innovation
aeonpeople
3
990
“自分”を大切に、フラットに。キャリアチェンジしてからの一年 三ヶ月で見えたもの。
maimyyym
0
300
サーバーレスで楽しよう!お気軽に始められる3つのポイント / Have fun with Serverless!
_kensh
2
230
CNAPPから考えるAWSガバナンスの実践と最適化
nrinetcom
PRO
1
330
Tokyo RubyKaigi 12 - Scaling Ruby at GitHub
jhawthorn
2
210
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Designing Experiences People Love
moore
139
23k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Site-Speed That Sticks
csswizardry
3
310
No one is an island. Learnings from fostering a developers community.
thoeni
20
3.1k
Optimising Largest Contentful Paint
csswizardry
33
3k
Visualization
eitanlees
146
15k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight