Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
300
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
130
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
170
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
200
Python and Life Hacking with Emacs
mfcabrera
2
350
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
300
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
セキュリティAIエージェントの現在と未来 / PSS #2 Takumi Session
flatt_security
3
1.4k
HIG学習用スライド
yuukiw00w
0
110
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
980
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
140
「え?!それ今ではHTMLだけでできるの!?」驚きの進化を遂げたモダンHTML
riyaamemiya
10
4.5k
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
1
120
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
3
240
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
9
2k
Security Diaries of an Open Source IAM
ahus1
0
120
pmconf2025 - データを活用し「価値」へ繋げる
glorypulse
0
460
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
How native lazy objects will change Doctrine and Symfony forever
beberlei
1
380
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Automating Front-end Workflow
addyosmani
1371
200k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
GraphQLとの向き合い方2022年版
quramy
50
14k
A better future with KSS
kneath
240
18k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Music & Morning Musume
bryan
46
7k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight