Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
300
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
260
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
150
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
190
Python and Life Hacking with Emacs
mfcabrera
2
320
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
260
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
MCPを活用した検索システムの作り方/How to implement search systems with MCP #catalks
quiver
3
900
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
390
Classmethod AI Talks(CATs) #21 司会進行スライド(2025.04.17) / classmethod-ai-talks-aka-cats_moderator-slides_vol21_2025-04-17
shinyaa31
0
450
IVRyにおけるNLP活用と NLP2025の関連論文紹介
keisukeosone
0
180
テキスト解析で見る PyCon APAC 2025 セッション&スピーカートレンド分析
negi111111
0
280
Spice up your notifications/try!Swift25
noppefoxwolf
2
350
似たような課題が何度も蘇ってくるゾンビふりかえりを撲滅するため、ふりかえりのテーマをフォーカスしてもらった話 / focusing on the theme
naitosatoshi
0
390
こんなデータマートは嫌だ。どんな? / waiwai-data-meetup-202504
shuntak
6
1.7k
AIと開発者の共創: エージェント時代におけるAIフレンドリーなDevOpsの実践
bicstone
1
250
OSSコントリビュートをphp-srcメンテナの立場から語る / OSS Contribute
sakitakamachi
0
1.3k
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
1
160
Automatically generating types by running tests
sinsoku
1
440
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Designing for humans not robots
tammielis
252
25k
Rails Girls Zürich Keynote
gr2m
94
13k
Code Reviewing Like a Champion
maltzj
522
39k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
Code Review Best Practice
trishagee
67
18k
Statistics for Hackers
jakevdp
798
220k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
Unsuck your backbone
ammeep
670
57k
Designing Experiences People Love
moore
141
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
650
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight