Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
300
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
260
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
150
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
190
Python and Life Hacking with Emacs
mfcabrera
2
320
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
260
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
Стильный код: натуральный поиск редких атрибутов по картинке. Юлия Антохина, Data Scientist, Lamoda Tech
lamodatech
0
720
4/16/25 - SFJug - Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
1
100
3月のAWSアップデートを5分間でざっくりと!
kubomasataka
0
120
フロントエンドも盛り上げたい!フロントエンドCBとAmplifyの軌跡
mkdev10
2
280
LLM as プロダクト開発のパワードスーツ
layerx
PRO
1
240
Spring Bootで実装とインフラをこれでもかと分離するための試み
shintanimoto
7
820
彩の国で始めよう。おっさんエンジニアから共有したい、当たり前のことを当たり前にする技術
otsuki
0
150
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
3
420
品質文化を支える小さいクロスファンクショナルなチーム / Cross-functional teams fostering quality culture
toma_sm
0
110
SREの視点で考えるSIEM活用術 〜AWS環境でのセキュリティ強化〜
coconala_engineer
1
290
Writing Ruby Scripts with TypeProf
mame
0
140
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
470
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1369
200k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Building an army of robots
kneath
304
45k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
13
1.4k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Being A Developer After 40
akosma
91
590k
GitHub's CSS Performance
jonrohan
1030
460k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera mfcabrera@gmail.com Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello” me@mail.org
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight