Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
280
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
240
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
110
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
140
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.1k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
170
Python and Life Hacking with Emacs
mfcabrera
2
300
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.8k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
230
Dictionary Learning for Music Genre Recognition
mfcabrera
0
240
Other Decks in Technology
See All in Technology
Working as a Server-side Engineer at LY Corporation
lycorp_recruit_jp
0
350
PHP ユーザのための OpenTelemetry 入門 / phpcon2024-opentelemetry
shin1x1
3
1.4k
React Routerで実現する型安全なSPAルーティング
sansantech
PRO
2
250
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
200
TypeScript開発にモジュラーモノリスを持ち込む
sansantech
PRO
2
190
AWS環境におけるランサムウェア攻撃対策の設計
nrinetcom
PRO
0
130
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
110
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
210
KnowledgeBaseDocuments APIでベクトルインデックス管理を自動化する
iidaxs
1
280
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
39
16k
.NET 9 のパフォーマンス改善
nenonaninu
0
1.2k
podman_update_2024-12
orimanabu
1
290
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
510
110k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Adopting Sorbet at Scale
ufuk
73
9.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Building Your Own Lightsaber
phodgson
103
6.1k
Writing Fast Ruby
sferik
628
61k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight