Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
320
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
280
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
160
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
200
Python and Life Hacking with Emacs
mfcabrera
2
330
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
280
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
ウォンテッドリーのアラート設計と Datadog 移行での知見
donkomura
0
140
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
1
230
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
210
AIと描く、未来のBacklog 〜プロジェクト管理の次の10年を想像し、創造するセッション〜
hrm_o25
0
110
工業高校で学習したとあるエンジニアのキャリアの話
shirayanagiryuji
0
120
Amazon GuardDuty での脅威検出:脅威検出の実例から学ぶ
kintotechdev
0
130
Claude Codeは仕様駆動の夢を見ない
gotalab555
23
7.1k
結局QUICで通信は速くなるの?
kota_yata
8
7.4k
datadog-distribution-of-opentelemetry-collector-intro
tetsuya28
0
110
Amazon Inspector コードセキュリティで手軽に実現するシフトレフト
maimyyym
0
140
形式手法特論:位相空間としての並行プログラミング #kernelvm / Kernel VM Study Tokyo 18th
ytaka23
3
1.5k
Lambda management with ecspresso and Terraform
ijin
2
170
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Agile that works and the tools we love
rasmusluckow
329
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Side Projects
sachag
455
43k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
How STYLIGHT went responsive
nonsquared
100
5.7k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight