Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
270
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
240
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
110
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
140
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.1k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
170
Python and Life Hacking with Emacs
mfcabrera
2
300
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.8k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
220
Dictionary Learning for Music Genre Recognition
mfcabrera
0
240
Other Decks in Technology
See All in Technology
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
28
13k
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
310
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
OTelCol_TailSampling_and_SpanMetrics
gumamon
1
200
Zennのパフォーマンスモニタリングでやっていること
ryosukeigarashi
0
150
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
2
330
Lambdaと地方とコミュニティ
miu_crescent
2
370
DynamoDB でスロットリングが発生したとき/when_throttling_occurs_in_dynamodb_short
emiki
0
260
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
120
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
180
CysharpのOSS群から見るModern C#の現在地
neuecc
2
3.5k
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
130
Typedesign – Prime Four
hannesfritz
40
2.4k
Optimizing for Happiness
mojombo
376
70k
Scaling GitHub
holman
458
140k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
The Language of Interfaces
destraynor
154
24k
Thoughts on Productivity
jonyablonski
67
4.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Navigating Team Friction
lara
183
14k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight