$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
300
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
140
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
170
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.3k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
200
Python and Life Hacking with Emacs
mfcabrera
2
350
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
2k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
300
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.8k
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
170
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
400
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
210
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.2k
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
130
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
110
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
130
Knowledge Work の AI Backend
kworkdev
PRO
0
210
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
450
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
240
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
860
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
250
BBQ
matthewcrist
89
9.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
410
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Color Theory Basics | Prateek | Gurzu
gurzu
0
150
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Visualization
eitanlees
150
16k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight