Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
300
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
130
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
170
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
200
Python and Life Hacking with Emacs
mfcabrera
2
340
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
300
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
コミュニティと共に変化する 私とFusicの8年間
ayasamind
0
450
AIでテストプロセスを自動化しよう251113.pdf
sakatakazunori
0
110
フライトコントローラPX4の中身(制御器)を覗いてみた
santana_hammer
1
140
[CV勉強会@関東 ICCV2025] WoTE: End-to-End Driving with Online Trajectory Evaluation via BEV World Model
shinkyoto
0
160
クレジットカードの不正を防止する技術
yutadayo
16
6.8k
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
350
CDKの魔法を少し解いてみる ― synth・build・diffで覗くIaCの裏側 ―
takahumi27
1
140
AIを前提に、業務を”再構築”せよ IVRyの9ヶ月にわたる挑戦と未来の働き方 (BTCONJP2025)
yueda256
1
200
嗚呼、当時の本番環境の状態で AI Agentを再評価したいなぁ...
po3rin
0
400
バクラクの AI-BPO を支える AI エージェント 〜とそれを支える Bet AI Guild〜
tomoaki25
2
670
[JDDStudy #10] 社内Agent勉強会の取り組み紹介
yp_genzitsu
1
130
Flutter DevToolsで発見! 本番アプリのパフォーマンス問題と改善の実践
goto_tsl
1
390
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Language of Interfaces
destraynor
162
25k
A Tale of Four Properties
chriscoyier
161
23k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
KATA
mclloyd
PRO
32
15k
The Invisible Side of Design
smashingmag
302
51k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Visualization
eitanlees
150
16k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Producing Creativity
orderedlist
PRO
348
40k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight