Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
勉強会2_機械学習のモデル学習と開発について
Search
milky04
May 19, 2024
Programming
0
60
勉強会2_機械学習のモデル学習と開発について
社内勉強会資料です(2023/7/28)
milky04
May 19, 2024
Tweet
Share
More Decks by milky04
See All by milky04
勉強会5_画像生成AIの仕組みと学習・i2i対策
milky04
0
13
勉強会3_LLMを活用する技術について
milky04
0
70
勉強会4_アップデートされたAssistantsAPIを試す
milky04
0
2.4k
勉強会1_SlackのAIチャットボットを作ってみた
milky04
0
73
Other Decks in Programming
See All in Programming
AI駆動のマルチエージェントによる業務フロー自動化の設計と実践
h_okkah
0
150
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
87
29k
効率的な開発手段として VRTを活用する
ishkawa
0
140
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
140
iOS 26にアップデートすると実機でのHot Reloadができない?
umigishiaoi
0
130
ISUCON研修おかわり会 講義スライド
arfes0e2b3c
1
450
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
900
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
5
790
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
5
880
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
650
Hack Claude Code with Claude Code
choplin
4
2.1k
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
1
18k
Featured
See All Featured
Side Projects
sachag
455
42k
Bash Introduction
62gerente
613
210k
Thoughts on Productivity
jonyablonski
69
4.7k
Making Projects Easy
brettharned
116
6.3k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Designing for humans not robots
tammielis
253
25k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
How GitHub (no longer) Works
holman
314
140k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
機械学習のモデル学習と開発について
はじめに • 近年AI・機械学習の発展が凄い(ChatGPTなど) →そもそもモデル学習や開発はどのように行っているのか? ⇒実際に私が行った内容や作成したものも交えてお話していきます
機械学習とは • 与えられたデータからいくつかのパターンを認識・学習し、未知のデータを 予測、分類する技術 • 教師あり学習/教師なし学習/強化学習という、大きく3つの方法がある
機械学習の種類 • 教師あり学習 学習データに正解を与えて、正解を出力するように学習させる方法 • 教師なし学習 学習データに正解を与えずに、データの規則性や特徴を導かせる方法 • 強化学習 目的に設定されたスコアを最大化するように、判断を強化させる方法
機械学習モデルとは • 入力データに対して結果(=出力)を導き出す仕組みのこと • 用意したデータを学習する前の基盤となるモデルと、学習後のモデル(学 習済みモデル)の2通りがある →どちらを指すこともあるため、混同しやすい
機械学習の開発の流れ 1. 基盤となるモデルをいくつか選ぶ 2. 学習条件を統一し、各モデルに学習させる 3. 出来た各学習済みモデルの精度を比較する ⇒一番精度の高いモデルを採用する 基盤となるモデルを選ぶ 学習済みモデルが出来る
モデルに学習させる
実際に行った内容 • 基盤となるモデルに、4種類の鳥の画像を学習させる(教師あり学習) • 学習済みモデルを使用して画像分類Webアプリを作成 →実際にコードを見たのち、作成したものを動かします
画像分類(画像認識)の活用例 • 自動運転での物体検知 • スマホのロック解除の顔認証 • 工場での不良品・不純物の検知 • など
今回は画像分類でしたが… • 音声認識など、他の分野でも同様のプロセスでモデルへの学習が可能 例:「こんばんは」という文字の情報付きの「こんばんは」の音声を学習させる →「こんばんは」の音声を文字起こし可能になる
終わりに • AI・機械学習のモデル学習や開発について、実際に私が行った内容や作 成したものも交えてお話しました。 • 今回の内容はあくまで一例であり、比較的簡易なものではありましたが、世 の中のAI・機械学習のモデル学習や開発はこのように行っているんだな、 ということがイメージ出来たなら幸いです