Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
勉強会3_LLMを活用する技術について
Search
milky04
May 19, 2024
Programming
0
83
勉強会3_LLMを活用する技術について
社内勉強会資料です(2023/11/15)
milky04
May 19, 2024
Tweet
Share
More Decks by milky04
See All by milky04
勉強会5_画像生成AIの仕組みと学習・i2i対策
milky04
0
150
勉強会2_機械学習のモデル学習と開発について
milky04
0
71
勉強会4_アップデートされたAssistantsAPIを試す
milky04
0
2.4k
勉強会1_SlackのAIチャットボットを作ってみた
milky04
0
78
Other Decks in Programming
See All in Programming
AtCoder Conference 2025
shindannin
0
840
Patterns of Patterns
denyspoltorak
0
400
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
430
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
220
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.5k
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
1k
AIエージェントの設計で注意するべきポイント6選
har1101
6
2.8k
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
4.1k
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
290
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
140
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
開発に寄りそう自動テストの実現
goyoki
2
1.6k
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.9k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
79
First, design no harm
axbom
PRO
1
1.1k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
150
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
220
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Deep Space Network (abreviated)
tonyrice
0
32
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
33
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
LLMを活用する技術について
はじめに • LLM(Large Language Model(大規模言語モデル))が話題ですが、 LLMを使 用したシステム・アプリケーション開発はどのように行うのか? →LLMを活用する技術のうち、「LangChain」と「Open Interpreter」について、 簡単に解説や紹介をしていきます。
• 実際にコードも見て、 (時間の許す限り)動かしていきます。 ※最新の情報が反映できていない部分があるかもしれません。
LLMとは • Large Language Model(大規模言語モデル)の略 • 大量のテキストデータを使ってトレーニングされた自然言語処理モデル • ファインチューニング等により様々な自然言語処理タスクに適応可能 •
例:テキスト生成/分類、感情分析、情報抽出、文章要約、質問応答 →ChatGPTはLLMの応用例の1つ。LLMを対話特化にファインチューニング したもの。
LangChain • LLMと連携するアプリの開発を支援するライブラリ • 言語モデルアプリケーションの構築に使用可能な、多くのモジュー ルを提供している • モジュールを個別に使用したり、組み合わせたり繋げて(Chain)複雑 なアプリケーションの作成が可能
LangChainの主なモジュール • Language Model : 言語モデルによる推論の実行 └LLM : テキスト生成モデル └ChatModel
: チャットモデル • Prompt Template : ユーザー入力からのプロンプトの生成 • Chain : 複数のLLMやプロンプトの入出力を繋げる • Agent : ユーザーの要求に応じてどの機能をどういう順番で実行するかを決定 • Memory : 過去のやりとりに関する情報を保持 • Retrieval : 検索拡張生成 (RAG) • Callback : ロギング、モニタリング、ストリーミングなどで利用
Open Interpreter • LLMを活用して開発されたオープンソースのツール • 自然言語による対話を通じてローカル環境でコードを実行し、結果を返す • ローカル環境で動作するため、OSを直接操作させることが可能であり、ファイル容 量やネット接続の制約がない •
対応言語:Python/R/JavaScript/shell/AppScript/HTML • 例えば以下のような様々な事が可能 └「YouTubeから動画をDLしてアニメーションを作成して」「動画に字幕をつけて」 └「ローカルにあるファイルを開いて中身を書き換えて」など →AIアシスタントの開発等に有用
Open Interpreterの仕組み 1. ユーザー入力受付&LLM初期化 2. ユーザー入力に関連したcode snipetsを取得(自然言語で問い合わせると Pythonコードのチュートリアルを返すAPIにリクエストして取得) 3. LLMへの指示とcode
snipets、ユーザー入力、ユーザーのOS等の情報をまとめ てpromptを作成し、LLMに投げる 4. エラー発生等うまくいかない場合は目標達成するまで再実行 ↑上記流れを繰り返す • 仕組みの詳細については以下参考 └Open Interpreterのログ解析して、何が行われているのか確認してみた └Open Interpreterの実装を読み解く
実際にコードを見ていきます • GoogleColab • https://colab.research.google.com/drive/1MpqkWFNs0UFH47AJgpGaVc 7umirZCDRd?usp=sharing
おわりに • こうした技術を活用して、LLMを使用したシステム・アプリケーション開発を することで、アイデアや工夫次第で様々な可能性が広がると思います。 • 技術の発展スピードが凄く、追うのは中々大変ですが今後も注目であり、こ の先どう進歩していくか色々な意味で楽しみですね(先日もOpenAI DevDay で発表がありましたね)。 •
今回紹介した他にもLLM関連の技術は様々なものがあるので、興味のあ る方は調べてみてください。