Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
勉強会3_LLMを活用する技術について
Search
milky04
May 19, 2024
Programming
0
72
勉強会3_LLMを活用する技術について
社内勉強会資料です(2023/11/15)
milky04
May 19, 2024
Tweet
Share
More Decks by milky04
See All by milky04
勉強会5_画像生成AIの仕組みと学習・i2i対策
milky04
0
24
勉強会2_機械学習のモデル学習と開発について
milky04
0
60
勉強会4_アップデートされたAssistantsAPIを試す
milky04
0
2.4k
勉強会1_SlackのAIチャットボットを作ってみた
milky04
0
73
Other Decks in Programming
See All in Programming
NEWT Backend Evolution
xpromx
1
160
AIに安心して任せるためにTypeScriptで一意な型を作ろう
arfes0e2b3c
0
270
Jakarta EE Meets AI
ivargrimstad
0
380
PHPUnitの限界をPlaywrightで補完するテストアプローチ
yuzneri
0
350
それ CLI フレームワークがなくてもできるよ / Building CLI Tools Without Frameworks
orgachem
PRO
11
2.9k
顧客の画像データをテラバイト単位で配信する 画像サーバを WebP にした際に起こった課題と その対応策 ~継続的な取り組みを添えて~
takutakahashi
4
1.4k
抽象化という思考のツール - 理解と活用 - / Abstraction-as-a-Tool-for-Thinking
shin1x1
1
860
The Modern View Layer Rails Deserves: A Vision For 2025 And Beyond @ RailsConf 2025, Philadelphia, PA
marcoroth
2
820
効率的な開発手段として VRTを活用する
ishkawa
1
180
オンコール⼊⾨〜ページャーが鳴る前に、あなたが備えられること〜 / Before The Pager Rings
yktakaha4
2
1.1k
AWS Summit Japan 2024と2025の比較/はじめてのKiro、今あなたは岐路に立つ
satoshi256kbyte
1
250
Android 16KBページサイズ対応をはじめからていねいに
mine2424
0
740
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Documentation Writing (for coders)
carmenintech
72
4.9k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Building an army of robots
kneath
306
45k
Facilitating Awesome Meetings
lara
54
6.5k
Code Reviewing Like a Champion
maltzj
524
40k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
LLMを活用する技術について
はじめに • LLM(Large Language Model(大規模言語モデル))が話題ですが、 LLMを使 用したシステム・アプリケーション開発はどのように行うのか? →LLMを活用する技術のうち、「LangChain」と「Open Interpreter」について、 簡単に解説や紹介をしていきます。
• 実際にコードも見て、 (時間の許す限り)動かしていきます。 ※最新の情報が反映できていない部分があるかもしれません。
LLMとは • Large Language Model(大規模言語モデル)の略 • 大量のテキストデータを使ってトレーニングされた自然言語処理モデル • ファインチューニング等により様々な自然言語処理タスクに適応可能 •
例:テキスト生成/分類、感情分析、情報抽出、文章要約、質問応答 →ChatGPTはLLMの応用例の1つ。LLMを対話特化にファインチューニング したもの。
LangChain • LLMと連携するアプリの開発を支援するライブラリ • 言語モデルアプリケーションの構築に使用可能な、多くのモジュー ルを提供している • モジュールを個別に使用したり、組み合わせたり繋げて(Chain)複雑 なアプリケーションの作成が可能
LangChainの主なモジュール • Language Model : 言語モデルによる推論の実行 └LLM : テキスト生成モデル └ChatModel
: チャットモデル • Prompt Template : ユーザー入力からのプロンプトの生成 • Chain : 複数のLLMやプロンプトの入出力を繋げる • Agent : ユーザーの要求に応じてどの機能をどういう順番で実行するかを決定 • Memory : 過去のやりとりに関する情報を保持 • Retrieval : 検索拡張生成 (RAG) • Callback : ロギング、モニタリング、ストリーミングなどで利用
Open Interpreter • LLMを活用して開発されたオープンソースのツール • 自然言語による対話を通じてローカル環境でコードを実行し、結果を返す • ローカル環境で動作するため、OSを直接操作させることが可能であり、ファイル容 量やネット接続の制約がない •
対応言語:Python/R/JavaScript/shell/AppScript/HTML • 例えば以下のような様々な事が可能 └「YouTubeから動画をDLしてアニメーションを作成して」「動画に字幕をつけて」 └「ローカルにあるファイルを開いて中身を書き換えて」など →AIアシスタントの開発等に有用
Open Interpreterの仕組み 1. ユーザー入力受付&LLM初期化 2. ユーザー入力に関連したcode snipetsを取得(自然言語で問い合わせると Pythonコードのチュートリアルを返すAPIにリクエストして取得) 3. LLMへの指示とcode
snipets、ユーザー入力、ユーザーのOS等の情報をまとめ てpromptを作成し、LLMに投げる 4. エラー発生等うまくいかない場合は目標達成するまで再実行 ↑上記流れを繰り返す • 仕組みの詳細については以下参考 └Open Interpreterのログ解析して、何が行われているのか確認してみた └Open Interpreterの実装を読み解く
実際にコードを見ていきます • GoogleColab • https://colab.research.google.com/drive/1MpqkWFNs0UFH47AJgpGaVc 7umirZCDRd?usp=sharing
おわりに • こうした技術を活用して、LLMを使用したシステム・アプリケーション開発を することで、アイデアや工夫次第で様々な可能性が広がると思います。 • 技術の発展スピードが凄く、追うのは中々大変ですが今後も注目であり、こ の先どう進歩していくか色々な意味で楽しみですね(先日もOpenAI DevDay で発表がありましたね)。 •
今回紹介した他にもLLM関連の技術は様々なものがあるので、興味のあ る方は調べてみてください。