Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
勉強会3_LLMを活用する技術について
Search
milky04
May 19, 2024
Programming
0
41
勉強会3_LLMを活用する技術について
社内勉強会資料です(2023/11/15)
milky04
May 19, 2024
Tweet
Share
More Decks by milky04
See All by milky04
勉強会2_機械学習のモデル学習と開発について
milky04
0
30
勉強会4_アップデートされたAssistantsAPIを試す
milky04
0
2.2k
勉強会1_SlackのAIチャットボットを作ってみた
milky04
0
49
Other Decks in Programming
See All in Programming
命名をリントする
chiroruxx
1
440
【re:Growth 2024】 Aurora DSQL をちゃんと話します!
maroon1st
0
800
Monixと常駐プログラムの勘どころ / Scalaわいわい勉強会 #4
stoneream
0
290
menu基盤チームによるGoogle Cloudの活用事例~Application Integration, Cloud Tasks編~
yoshifumi_ishikura
0
110
短期間での新規プロダクト開発における「コスパの良い」Goのテスト戦略」 / kamakura.go
n3xem
2
170
PHPで作るWebSocketサーバー ~リアクティブなアプリケーションを知るために~ / WebSocket Server in PHP - To know reactive applications
seike460
PRO
2
650
htmxって知っていますか?次世代のHTML
hiro_ghap1
0
350
歴史と現在から考えるスケーラブルなソフトウェア開発のプラクティス
i10416
0
130
Zoneless Testing
rainerhahnekamp
0
120
ゆるやかにgolangci-lintのルールを強くする / Kyoto.go #56
utgwkk
2
440
20年もののレガシープロダクトに 0からPHPStanを入れるまで / phpcon2024
hirobe1999
0
770
「とりあえず動く」コードはよい、「読みやすい」コードはもっとよい / Code that 'just works' is good, but code that is 'readable' is even better.
mkmk884
3
670
Featured
See All Featured
Faster Mobile Websites
deanohume
305
30k
Testing 201, or: Great Expectations
jmmastey
41
7.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Gamification - CAS2011
davidbonilla
80
5.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.6k
Code Reviewing Like a Champion
maltzj
521
39k
What's in a price? How to price your products and services
michaelherold
243
12k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Writing Fast Ruby
sferik
628
61k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
Transcript
LLMを活用する技術について
はじめに • LLM(Large Language Model(大規模言語モデル))が話題ですが、 LLMを使 用したシステム・アプリケーション開発はどのように行うのか? →LLMを活用する技術のうち、「LangChain」と「Open Interpreter」について、 簡単に解説や紹介をしていきます。
• 実際にコードも見て、 (時間の許す限り)動かしていきます。 ※最新の情報が反映できていない部分があるかもしれません。
LLMとは • Large Language Model(大規模言語モデル)の略 • 大量のテキストデータを使ってトレーニングされた自然言語処理モデル • ファインチューニング等により様々な自然言語処理タスクに適応可能 •
例:テキスト生成/分類、感情分析、情報抽出、文章要約、質問応答 →ChatGPTはLLMの応用例の1つ。LLMを対話特化にファインチューニング したもの。
LangChain • LLMと連携するアプリの開発を支援するライブラリ • 言語モデルアプリケーションの構築に使用可能な、多くのモジュー ルを提供している • モジュールを個別に使用したり、組み合わせたり繋げて(Chain)複雑 なアプリケーションの作成が可能
LangChainの主なモジュール • Language Model : 言語モデルによる推論の実行 └LLM : テキスト生成モデル └ChatModel
: チャットモデル • Prompt Template : ユーザー入力からのプロンプトの生成 • Chain : 複数のLLMやプロンプトの入出力を繋げる • Agent : ユーザーの要求に応じてどの機能をどういう順番で実行するかを決定 • Memory : 過去のやりとりに関する情報を保持 • Retrieval : 検索拡張生成 (RAG) • Callback : ロギング、モニタリング、ストリーミングなどで利用
Open Interpreter • LLMを活用して開発されたオープンソースのツール • 自然言語による対話を通じてローカル環境でコードを実行し、結果を返す • ローカル環境で動作するため、OSを直接操作させることが可能であり、ファイル容 量やネット接続の制約がない •
対応言語:Python/R/JavaScript/shell/AppScript/HTML • 例えば以下のような様々な事が可能 └「YouTubeから動画をDLしてアニメーションを作成して」「動画に字幕をつけて」 └「ローカルにあるファイルを開いて中身を書き換えて」など →AIアシスタントの開発等に有用
Open Interpreterの仕組み 1. ユーザー入力受付&LLM初期化 2. ユーザー入力に関連したcode snipetsを取得(自然言語で問い合わせると Pythonコードのチュートリアルを返すAPIにリクエストして取得) 3. LLMへの指示とcode
snipets、ユーザー入力、ユーザーのOS等の情報をまとめ てpromptを作成し、LLMに投げる 4. エラー発生等うまくいかない場合は目標達成するまで再実行 ↑上記流れを繰り返す • 仕組みの詳細については以下参考 └Open Interpreterのログ解析して、何が行われているのか確認してみた └Open Interpreterの実装を読み解く
実際にコードを見ていきます • GoogleColab • https://colab.research.google.com/drive/1MpqkWFNs0UFH47AJgpGaVc 7umirZCDRd?usp=sharing
おわりに • こうした技術を活用して、LLMを使用したシステム・アプリケーション開発を することで、アイデアや工夫次第で様々な可能性が広がると思います。 • 技術の発展スピードが凄く、追うのは中々大変ですが今後も注目であり、こ の先どう進歩していくか色々な意味で楽しみですね(先日もOpenAI DevDay で発表がありましたね)。 •
今回紹介した他にもLLM関連の技術は様々なものがあるので、興味のあ る方は調べてみてください。