Intro . . . . . . . . . . BNNs are not robust to covariate shift . . . . . . . . . . . . Understanding BNNs under covariate shift . . . . . . Towards more robust BMA . . . . Discussion References References I Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 2022. Pavel Izmailov, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson. Dangers of bayesian model averaging under covariate shift. Advances in Neural Information Processing Systems, 34:3309–3322, 2021a. Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are bayesian neural network posteriors really like? In International conference on machine learning, pages 4629–4640. PMLR, 2021b. Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). 2014. URL http://www.cs.toronto.edu/~kriz/cifar.html. Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/exdb/mnist/. Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951. 23/23