Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的学習理論の基礎 I
Search
Masanari Kimura
December 11, 2020
Research
3
510
統計的学習理論の基礎 I
Masanari Kimura
December 11, 2020
Tweet
Share
More Decks by Masanari Kimura
See All by Masanari Kimura
Equivalence of Geodesics and Importance Weighting from the Perspective of Information Geometry
mkimura
0
290
機械学習における重要度重み付けとその応用
mkimura
3
2.5k
Paper Intro: Human Rademacher Complexity
mkimura
0
140
On the principle of Invariant Risk Minimization
mkimura
0
290
論文紹介:Clustering with Bregman Divergences: an Asymptotic Analysis
mkimura
0
480
Generalization Bounds for Set-to-Set Matching with Negative Sampling
mkimura
0
130
論文紹介:On the Importance of Gradients for Detecting Distributional Shifts in the Wild
mkimura
2
630
論文紹介:Dangers of Bayesian Model Averaging under Covariate Shift
mkimura
0
310
Information Geometry of Dropout Training
mkimura
0
270
Other Decks in Research
See All in Research
CARMUI-NET:自動運転車遠隔監視のためのバーチャル都市プラットフォームにおける通信品質変動機能の開発と評価 / UBI85
yumulab
0
200
Sosiaalisen median katsaus 03/2025 + tekoäly
hponka
0
1k
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
1
200
Ad-DS Paper Circle #1
ykaneko1992
0
5.1k
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.4k
自然由来エネルギーの揺らぎによるワークロード移動を想定した超個体データセンターシステムの検討進捗状況
kikuzo
0
110
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
560
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
210
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
430
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
470
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
370
90 分で学ぶ P 対 NP 問題
e869120
16
7k
Featured
See All Featured
Visualization
eitanlees
146
16k
Typedesign – Prime Four
hannesfritz
41
2.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
180
53k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
Being A Developer After 40
akosma
91
590k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Designing for Performance
lara
608
69k
Code Review Best Practice
trishagee
68
18k
The Cost Of JavaScript in 2023
addyosmani
49
7.9k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Scaling GitHub
holman
459
140k
Transcript
CompML 統計的学習理論の基礎 I Masanari Kimura (@machinery81)
CompML TL;DR • 統計的学習理論の基礎的な事項のまとめ • 第一回は以下のトピックについて: • 種々の収束概念 • 確率収束
• 概収束 • UCEP property • ASCEP property • UCEM property • PAC Learning 2
CompML Uniform Convergence
CompML (, ):可測空間,:確率測度 からi.i.d.に生成された! , … , " から計算される ∈
の経験確率 + ; " = ## ∈ = 1 1 #$! " % # 気になるのは, • + (; " )がちゃんと()に収束するのか? • もしそうならば,どのように収束するのか? 4 経験確率(Empirical Probability)
CompML 確率収束(Converges in Probability) 定義.ある > 0について ! % ;
! − () > → 0 ( → ∞) のとき, % (; ! )は()に確率収束するという. 同値な表現として, ∀, > 0, ∃" , > 0 . . ! % ; ! − > ≤ ∀ ≥ "
CompML 概収束(Converges almost surely) 定義.経験確率について # % ; ! →
→ ∞ = 1 となるとき, % (; ! )は()に概収束するという. 概収束は確率収束より強い: % ; ! $.&. () ⟹ % (; ! ) → ' ()
CompML 経験確率は真の確率に確率収束する (証明)インジケータ関数( ()はBernoulli過程とみなせる: ( = 1 = 従って,Chernoffの不等式から !
% ; ! − () > ≤ 2 exp −2) が得られる.従って, → ∞で ! % ; ! − () > → 0であるので, % (; ! )は()に確率収束することが証明された. □ 実はもっと強く,経験確率は真の確率に概収束する.
CompML UCEP; Uniform Convergence of Empirical Probabilities 単一のではなく,その集合 ⊂ を考える.
定義.あるについて, ! sup (∈ % − () > → 0 ( → 0) が成り立つとき,はUCEP propertyを持つという.
CompML ASCEP; Almost Sure Convergence of Empirical Probabilities 定義.あるについて, #
sup (∈ % ! − () → 0 → ∞ = 1 が成り立つとき,はASCEP propertyを持つという.
CompML UCEM; Uniform Convergence of Empirical Means 確率変数についての関数の経験平均を以下のように書く: F ()
= 1 I ,-. ! , 定義.ある関数クラスℱについて, ! sup /∈ℱ F − > → 0 ( → 0) が成り立つとき,ℱはUCEM propertyを持つという.
CompML PAC Learning
CompML Learning Concepts • 未知の関数または概念を学習するとはどういうことか? • より強くいうと,汎化するとはどういうことか? • 学習理論における基本的なパーツは ◦
集合 ◦ 加法族 ◦ 可測空間(, )の確率測度のクラス ◦ conceptクラス ⊂ または関数クラスℱ
CompML Concept Learning 目的は,観測. , … , ! に基づいて未知のtarget concept
∈ を学習すること. • 各, について,それがに含まれるかどうかを1 (, )で表す(オラクル) • これらのペアから,写像の族(アルゴリズム)を考える: ! : × 0,1 ! → このアルゴリズムによって生成される仮説(hypothesis) ! = ! . , 1 . , … , ! , 1 !
CompML PAC学習可能;Probability Approximately Correct 定義.アルゴリズム! は以下を満たすとき精度でPAC学習可能であるという: sup 1∈2 ! 3
, ! > → 0 ( → 0) ここで3 は仮説とtarget conceptの間の何らかのエラーに当たる. 同値な表現:! は任意の, > 0について,ある" (, )が存在して以下を満た すときPAC学習可能: ! 3 , ! > ≤ , ∀ ≥ "
CompML まとめ • 統計的学習理論の準備として幾つかの基礎的な事項をまとめた • 確率収束,概収束 • PAC学習可能性
CompML 参考文献 • Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine
Learning - From Theory to Algorithms.. Cambridge University Press. ISBN: 978-1-10-705713-5 • Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.