Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計的学習理論の基礎 I
Search
Masanari Kimura
December 11, 2020
Research
3
520
統計的学習理論の基礎 I
Masanari Kimura
December 11, 2020
Tweet
Share
More Decks by Masanari Kimura
See All by Masanari Kimura
Equivalence of Geodesics and Importance Weighting from the Perspective of Information Geometry
mkimura
0
300
機械学習における重要度重み付けとその応用
mkimura
3
2.6k
Paper Intro: Human Rademacher Complexity
mkimura
0
150
On the principle of Invariant Risk Minimization
mkimura
0
300
論文紹介:Clustering with Bregman Divergences: an Asymptotic Analysis
mkimura
0
500
Generalization Bounds for Set-to-Set Matching with Negative Sampling
mkimura
0
140
論文紹介:On the Importance of Gradients for Detecting Distributional Shifts in the Wild
mkimura
2
670
論文紹介:Dangers of Bayesian Model Averaging under Covariate Shift
mkimura
0
330
Information Geometry of Dropout Training
mkimura
0
280
Other Decks in Research
See All in Research
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
230
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
950
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
660
Submeter-level land cover mapping of Japan
satai
3
130
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.9k
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
230
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
250
ノンパラメトリック分布表現を用いた位置尤度場周辺化によるRTK-GNSSの整数アンビギュイティ推定
aoki_nosse
0
320
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
980
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
960
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
190
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
180
Featured
See All Featured
Code Review Best Practice
trishagee
69
18k
Become a Pro
speakerdeck
PRO
29
5.4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
The Language of Interfaces
destraynor
158
25k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Facilitating Awesome Meetings
lara
54
6.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Done Done
chrislema
184
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Transcript
CompML 統計的学習理論の基礎 I Masanari Kimura (@machinery81)
CompML TL;DR • 統計的学習理論の基礎的な事項のまとめ • 第一回は以下のトピックについて: • 種々の収束概念 • 確率収束
• 概収束 • UCEP property • ASCEP property • UCEM property • PAC Learning 2
CompML Uniform Convergence
CompML (, ):可測空間,:確率測度 からi.i.d.に生成された! , … , " から計算される ∈
の経験確率 + ; " = ## ∈ = 1 1 #$! " % # 気になるのは, • + (; " )がちゃんと()に収束するのか? • もしそうならば,どのように収束するのか? 4 経験確率(Empirical Probability)
CompML 確率収束(Converges in Probability) 定義.ある > 0について ! % ;
! − () > → 0 ( → ∞) のとき, % (; ! )は()に確率収束するという. 同値な表現として, ∀, > 0, ∃" , > 0 . . ! % ; ! − > ≤ ∀ ≥ "
CompML 概収束(Converges almost surely) 定義.経験確率について # % ; ! →
→ ∞ = 1 となるとき, % (; ! )は()に概収束するという. 概収束は確率収束より強い: % ; ! $.&. () ⟹ % (; ! ) → ' ()
CompML 経験確率は真の確率に確率収束する (証明)インジケータ関数( ()はBernoulli過程とみなせる: ( = 1 = 従って,Chernoffの不等式から !
% ; ! − () > ≤ 2 exp −2) が得られる.従って, → ∞で ! % ; ! − () > → 0であるので, % (; ! )は()に確率収束することが証明された. □ 実はもっと強く,経験確率は真の確率に概収束する.
CompML UCEP; Uniform Convergence of Empirical Probabilities 単一のではなく,その集合 ⊂ を考える.
定義.あるについて, ! sup (∈ % − () > → 0 ( → 0) が成り立つとき,はUCEP propertyを持つという.
CompML ASCEP; Almost Sure Convergence of Empirical Probabilities 定義.あるについて, #
sup (∈ % ! − () → 0 → ∞ = 1 が成り立つとき,はASCEP propertyを持つという.
CompML UCEM; Uniform Convergence of Empirical Means 確率変数についての関数の経験平均を以下のように書く: F ()
= 1 I ,-. ! , 定義.ある関数クラスℱについて, ! sup /∈ℱ F − > → 0 ( → 0) が成り立つとき,ℱはUCEM propertyを持つという.
CompML PAC Learning
CompML Learning Concepts • 未知の関数または概念を学習するとはどういうことか? • より強くいうと,汎化するとはどういうことか? • 学習理論における基本的なパーツは ◦
集合 ◦ 加法族 ◦ 可測空間(, )の確率測度のクラス ◦ conceptクラス ⊂ または関数クラスℱ
CompML Concept Learning 目的は,観測. , … , ! に基づいて未知のtarget concept
∈ を学習すること. • 各, について,それがに含まれるかどうかを1 (, )で表す(オラクル) • これらのペアから,写像の族(アルゴリズム)を考える: ! : × 0,1 ! → このアルゴリズムによって生成される仮説(hypothesis) ! = ! . , 1 . , … , ! , 1 !
CompML PAC学習可能;Probability Approximately Correct 定義.アルゴリズム! は以下を満たすとき精度でPAC学習可能であるという: sup 1∈2 ! 3
, ! > → 0 ( → 0) ここで3 は仮説とtarget conceptの間の何らかのエラーに当たる. 同値な表現:! は任意の, > 0について,ある" (, )が存在して以下を満た すときPAC学習可能: ! 3 , ! > ≤ , ∀ ≥ "
CompML まとめ • 統計的学習理論の準備として幾つかの基礎的な事項をまとめた • 確率収束,概収束 • PAC学習可能性
CompML 参考文献 • Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine
Learning - From Theory to Algorithms.. Cambridge University Press. ISBN: 978-1-10-705713-5 • Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.