Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2011-MongoDC-Scaling.pdf
Search
mongodb
July 12, 2011
Programming
2
200
2011-MongoDC-Scaling.pdf
mongodb
July 12, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.3k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
510
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
520
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
490
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
Namespace and Its Future
tagomoris
6
710
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
1.3k
Cache Me If You Can
ryunen344
2
3.1k
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
奥深くて厄介な「改行」と仲良くなる20分
oguemon
1
560
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
3
310
Performance for Conversion! 分散トレーシングでボトルネックを 特定せよ
inetand
0
2.4k
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
350
Zendeskのチケットを Amazon Bedrockで 解析した
ryokosuge
3
320
JSONataを使ってみよう Step Functionsが楽しくなる実践テクニック #devio2025
dafujii
1
640
Flutter with Dart MCP: All You Need - 박제창 2025 I/O Extended Busan
itsmedreamwalker
0
150
rage against annotate_predecessor
junk0612
0
170
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.4k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
A better future with KSS
kneath
239
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Facilitating Awesome Meetings
lara
55
6.5k
Rails Girls Zürich Keynote
gr2m
95
14k
KATA
mclloyd
32
14k
It's Worth the Effort
3n
187
28k
Transcript
Eliot Horowitz @eliothorowitz MongoDC June 27, 2011 Practical Scaling and
Sharding
Scaling by Optimization • Schema Design • Index Design •
Hardware Configuration
Horizontal Scaling • Vertical scaling is limited • Hard to
scale vertically in the cloud • Can scale wider than higher
Replica Sets • One master at any time • Programmer
determines if read hits master or a slave • Easy to setup to scale reads
db.people.find( { state : “NY” } ).addOption( SlaveOK ) •
routed to a secondary automatically • will use master if no secondary is available
Not Enough • Writes don’t scale • Reads are out
of date on slaves • RAM/Data Size doesn’t scale
• Distribute write load • Keep working set in RAM
• Consistent reads • Preserve functionality Why Shard?
Sharding Design Goals • Scale linearly • Increase capacity with
no downtime • Transparent to the application • Low administration to add capacity
Sharding and Documents • Rich documents reduce need for joins
• No joins makes sharding solvable
• Choose how you partition data • Convert from single
replica set to sharding with no downtime • Full feature set • Fully consistent by default Basics
Architecture client mongos ... mongos mongod mongod ... Shards mongod
mongod mongod Config Servers mongod mongod mongod mongod mongod mongod mongod client client client
Data Center Primary Data Center Secondary S1 p=1 S1 p=1
S1 p=0 S2 p=0 S3 p=0 S2 p=1 S3 p=1 S2 p=1 S3 p=1 Config 2 Config 2 Config 1 mongos mongos mongos mongos Typical Basic Setup
Range Based • collection is broken into chunks by range
• chunks default to 64mb or 100,000 objects
Choosing a Shard Key • Shard key determines how data
is partitioned • Hard to change • Most important performance decision
Use Case: Photos { photo_id : ???? , data :
<binary> } What’s the right key? • auto increment • MD5( data ) • month() + MD5(data)
Initial Loading • System start with 1 chunk • Writes
will hit 1 shard and then move • Pre-splitting for initial bulk loading can dramatically improve bulk load time
Administering a Cluster • Do not wait too long to
add capacity • Need capacity for normal workload + cost of moving data • Stay < 70% operational capacity
Hardware Considerations • Understand working set and make sure it
can fit in RAM • Choose appropriate sized boxes for shards • Too small and admin/overhead goes up • Too large, and you can’t add capacity smoothly
DEMO
Download MongoDB http://www.mongodb.org and let us know what you think
@eliothorowitz @mongodb 10gen is hiring! http://www.10gen.com/jobs
Use Case: User Profiles { email : “
[email protected]
” , addresses
: [ { state : “NY” } ] } • Shard by email • Lookup by email hits 1 node • Index on { “addresses.state” : 1 }
Use Case: Activity Stream { user_id : XXX, event_id :
YYY , data : ZZZ } • Shard by user_id • Looking up an activity stream hits 1 node • Writing even is distributed • Index on { “event_id” : 1 } for deletes