Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2011-MongoDC-Scaling.pdf
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
mongodb
July 12, 2011
Programming
2
200
2011-MongoDC-Scaling.pdf
mongodb
July 12, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.4k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
530
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
540
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
510
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
710
Data-Centric Kaggle
isax1015
2
770
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
AI & Enginnering
codelynx
0
110
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
940
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
270
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
200
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Visualization
eitanlees
150
17k
HDC tutorial
michielstock
1
370
Optimizing for Happiness
mojombo
379
71k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Building AI with AI
inesmontani
PRO
1
690
BBQ
matthewcrist
89
10k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
170
Google's AI Overviews - The New Search
badams
0
900
Transcript
Eliot Horowitz @eliothorowitz MongoDC June 27, 2011 Practical Scaling and
Sharding
Scaling by Optimization • Schema Design • Index Design •
Hardware Configuration
Horizontal Scaling • Vertical scaling is limited • Hard to
scale vertically in the cloud • Can scale wider than higher
Replica Sets • One master at any time • Programmer
determines if read hits master or a slave • Easy to setup to scale reads
db.people.find( { state : “NY” } ).addOption( SlaveOK ) •
routed to a secondary automatically • will use master if no secondary is available
Not Enough • Writes don’t scale • Reads are out
of date on slaves • RAM/Data Size doesn’t scale
• Distribute write load • Keep working set in RAM
• Consistent reads • Preserve functionality Why Shard?
Sharding Design Goals • Scale linearly • Increase capacity with
no downtime • Transparent to the application • Low administration to add capacity
Sharding and Documents • Rich documents reduce need for joins
• No joins makes sharding solvable
• Choose how you partition data • Convert from single
replica set to sharding with no downtime • Full feature set • Fully consistent by default Basics
Architecture client mongos ... mongos mongod mongod ... Shards mongod
mongod mongod Config Servers mongod mongod mongod mongod mongod mongod mongod client client client
Data Center Primary Data Center Secondary S1 p=1 S1 p=1
S1 p=0 S2 p=0 S3 p=0 S2 p=1 S3 p=1 S2 p=1 S3 p=1 Config 2 Config 2 Config 1 mongos mongos mongos mongos Typical Basic Setup
Range Based • collection is broken into chunks by range
• chunks default to 64mb or 100,000 objects
Choosing a Shard Key • Shard key determines how data
is partitioned • Hard to change • Most important performance decision
Use Case: Photos { photo_id : ???? , data :
<binary> } What’s the right key? • auto increment • MD5( data ) • month() + MD5(data)
Initial Loading • System start with 1 chunk • Writes
will hit 1 shard and then move • Pre-splitting for initial bulk loading can dramatically improve bulk load time
Administering a Cluster • Do not wait too long to
add capacity • Need capacity for normal workload + cost of moving data • Stay < 70% operational capacity
Hardware Considerations • Understand working set and make sure it
can fit in RAM • Choose appropriate sized boxes for shards • Too small and admin/overhead goes up • Too large, and you can’t add capacity smoothly
DEMO
Download MongoDB http://www.mongodb.org and let us know what you think
@eliothorowitz @mongodb 10gen is hiring! http://www.10gen.com/jobs
Use Case: User Profiles { email : “
[email protected]
” , addresses
: [ { state : “NY” } ] } • Shard by email • Lookup by email hits 1 node • Index on { “addresses.state” : 1 }
Use Case: Activity Stream { user_id : XXX, event_id :
YYY , data : ZZZ } • Shard by user_id • Looking up an activity stream hits 1 node • Writing even is distributed • Index on { “event_id” : 1 } for deletes