Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2011-MongoDC-Scaling.pdf
Search
mongodb
July 12, 2011
Programming
2
200
2011-MongoDC-Scaling.pdf
mongodb
July 12, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.4k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
530
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
540
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
510
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
ThorVG Viewer In VS Code
nors
0
770
Data-Centric Kaggle
isax1015
2
770
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
110
「ブロックテーマでは再現できない」は本当か?
inc2734
0
940
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
2026年 エンジニアリング自己学習法
yumechi
0
130
高速開発のためのコード整理術
sutetotanuki
1
390
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
Patterns of Patterns
denyspoltorak
0
1.4k
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
WENDY [Excerpt]
tessaabrams
9
36k
Design in an AI World
tapps
0
140
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Scaling GitHub
holman
464
140k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Transcript
Eliot Horowitz @eliothorowitz MongoDC June 27, 2011 Practical Scaling and
Sharding
Scaling by Optimization • Schema Design • Index Design •
Hardware Configuration
Horizontal Scaling • Vertical scaling is limited • Hard to
scale vertically in the cloud • Can scale wider than higher
Replica Sets • One master at any time • Programmer
determines if read hits master or a slave • Easy to setup to scale reads
db.people.find( { state : “NY” } ).addOption( SlaveOK ) •
routed to a secondary automatically • will use master if no secondary is available
Not Enough • Writes don’t scale • Reads are out
of date on slaves • RAM/Data Size doesn’t scale
• Distribute write load • Keep working set in RAM
• Consistent reads • Preserve functionality Why Shard?
Sharding Design Goals • Scale linearly • Increase capacity with
no downtime • Transparent to the application • Low administration to add capacity
Sharding and Documents • Rich documents reduce need for joins
• No joins makes sharding solvable
• Choose how you partition data • Convert from single
replica set to sharding with no downtime • Full feature set • Fully consistent by default Basics
Architecture client mongos ... mongos mongod mongod ... Shards mongod
mongod mongod Config Servers mongod mongod mongod mongod mongod mongod mongod client client client
Data Center Primary Data Center Secondary S1 p=1 S1 p=1
S1 p=0 S2 p=0 S3 p=0 S2 p=1 S3 p=1 S2 p=1 S3 p=1 Config 2 Config 2 Config 1 mongos mongos mongos mongos Typical Basic Setup
Range Based • collection is broken into chunks by range
• chunks default to 64mb or 100,000 objects
Choosing a Shard Key • Shard key determines how data
is partitioned • Hard to change • Most important performance decision
Use Case: Photos { photo_id : ???? , data :
<binary> } What’s the right key? • auto increment • MD5( data ) • month() + MD5(data)
Initial Loading • System start with 1 chunk • Writes
will hit 1 shard and then move • Pre-splitting for initial bulk loading can dramatically improve bulk load time
Administering a Cluster • Do not wait too long to
add capacity • Need capacity for normal workload + cost of moving data • Stay < 70% operational capacity
Hardware Considerations • Understand working set and make sure it
can fit in RAM • Choose appropriate sized boxes for shards • Too small and admin/overhead goes up • Too large, and you can’t add capacity smoothly
DEMO
Download MongoDB http://www.mongodb.org and let us know what you think
@eliothorowitz @mongodb 10gen is hiring! http://www.10gen.com/jobs
Use Case: User Profiles { email : “
[email protected]
” , addresses
: [ { state : “NY” } ] } • Shard by email • Lookup by email hits 1 node • Index on { “addresses.state” : 1 }
Use Case: Activity Stream { user_id : XXX, event_id :
YYY , data : ZZZ } • Shard by user_id • Looking up an activity stream hits 1 node • Writing even is distributed • Index on { “event_id” : 1 } for deletes