Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2011-MongoDC-Scaling.pdf
Search
mongodb
July 12, 2011
Programming
2
200
2011-MongoDC-Scaling.pdf
mongodb
July 12, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.4k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
530
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
530
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
500
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
AIコーディングエージェント(Manus)
kondai24
0
170
AIコーディングエージェント(Gemini)
kondai24
0
210
手軽に積ん読を増やすには?/読みたい本と付き合うには?
o0h
PRO
1
170
ID管理機能開発の裏側 高速にSaaS連携を実現したチームのAI活用編
atzzcokek
0
220
TypeScript 5.9 で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
1.3k
dnx で実行できるコマンド、作ってみました
tomohisa
0
140
エディターってAIで操作できるんだぜ
kis9a
0
710
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
200
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
120
Cell-Based Architecture
larchanjo
0
110
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
260
全員アーキテクトで挑む、 巨大で高密度なドメインの紐解き方
agatan
8
20k
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Docker and Python
trallard
47
3.7k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Transcript
Eliot Horowitz @eliothorowitz MongoDC June 27, 2011 Practical Scaling and
Sharding
Scaling by Optimization • Schema Design • Index Design •
Hardware Configuration
Horizontal Scaling • Vertical scaling is limited • Hard to
scale vertically in the cloud • Can scale wider than higher
Replica Sets • One master at any time • Programmer
determines if read hits master or a slave • Easy to setup to scale reads
db.people.find( { state : “NY” } ).addOption( SlaveOK ) •
routed to a secondary automatically • will use master if no secondary is available
Not Enough • Writes don’t scale • Reads are out
of date on slaves • RAM/Data Size doesn’t scale
• Distribute write load • Keep working set in RAM
• Consistent reads • Preserve functionality Why Shard?
Sharding Design Goals • Scale linearly • Increase capacity with
no downtime • Transparent to the application • Low administration to add capacity
Sharding and Documents • Rich documents reduce need for joins
• No joins makes sharding solvable
• Choose how you partition data • Convert from single
replica set to sharding with no downtime • Full feature set • Fully consistent by default Basics
Architecture client mongos ... mongos mongod mongod ... Shards mongod
mongod mongod Config Servers mongod mongod mongod mongod mongod mongod mongod client client client
Data Center Primary Data Center Secondary S1 p=1 S1 p=1
S1 p=0 S2 p=0 S3 p=0 S2 p=1 S3 p=1 S2 p=1 S3 p=1 Config 2 Config 2 Config 1 mongos mongos mongos mongos Typical Basic Setup
Range Based • collection is broken into chunks by range
• chunks default to 64mb or 100,000 objects
Choosing a Shard Key • Shard key determines how data
is partitioned • Hard to change • Most important performance decision
Use Case: Photos { photo_id : ???? , data :
<binary> } What’s the right key? • auto increment • MD5( data ) • month() + MD5(data)
Initial Loading • System start with 1 chunk • Writes
will hit 1 shard and then move • Pre-splitting for initial bulk loading can dramatically improve bulk load time
Administering a Cluster • Do not wait too long to
add capacity • Need capacity for normal workload + cost of moving data • Stay < 70% operational capacity
Hardware Considerations • Understand working set and make sure it
can fit in RAM • Choose appropriate sized boxes for shards • Too small and admin/overhead goes up • Too large, and you can’t add capacity smoothly
DEMO
Download MongoDB http://www.mongodb.org and let us know what you think
@eliothorowitz @mongodb 10gen is hiring! http://www.10gen.com/jobs
Use Case: User Profiles { email : “
[email protected]
” , addresses
: [ { state : “NY” } ] } • Shard by email • Lookup by email hits 1 node • Index on { “addresses.state” : 1 }
Use Case: Activity Stream { user_id : XXX, event_id :
YYY , data : ZZZ } • Shard by user_id • Looking up an activity stream hits 1 node • Writing even is distributed • Index on { “event_id” : 1 } for deletes