Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2011-MongoDC-Scaling.pdf
Search
mongodb
July 12, 2011
Programming
2
200
2011-MongoDC-Scaling.pdf
mongodb
July 12, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.4k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
520
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
530
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
500
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
俺流レスポンシブコーディング 2025
tak_dcxi
13
8k
スタートアップを支える技術戦略と組織づくり
pospome
8
15k
Reactive Thinking with Signals and the new Resource API
manfredsteyer
PRO
0
160
分散DBって何者なんだ... Spannerから学ぶRDBとの違い
iwashi623
0
170
AIコーディングエージェント(Manus)
kondai24
0
130
ソフトウェア設計の課題・原則・実践技法
masuda220
PRO
25
21k
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
5
1.5k
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
120
CSC305 Lecture 17
javiergs
PRO
0
270
GeistFabrik and AI-augmented software development
adewale
PRO
0
260
CloudNative Days Winter 2025: 一週間で作る低レイヤコンテナランタイム
ternbusty
7
1.9k
CSC305 Lecture 15
javiergs
PRO
0
250
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
How GitHub (no longer) Works
holman
316
140k
Six Lessons from altMBA
skipperchong
29
4.1k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Embracing the Ebb and Flow
colly
88
4.9k
How to Ace a Technical Interview
jacobian
280
24k
Become a Pro
speakerdeck
PRO
30
5.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
Eliot Horowitz @eliothorowitz MongoDC June 27, 2011 Practical Scaling and
Sharding
Scaling by Optimization • Schema Design • Index Design •
Hardware Configuration
Horizontal Scaling • Vertical scaling is limited • Hard to
scale vertically in the cloud • Can scale wider than higher
Replica Sets • One master at any time • Programmer
determines if read hits master or a slave • Easy to setup to scale reads
db.people.find( { state : “NY” } ).addOption( SlaveOK ) •
routed to a secondary automatically • will use master if no secondary is available
Not Enough • Writes don’t scale • Reads are out
of date on slaves • RAM/Data Size doesn’t scale
• Distribute write load • Keep working set in RAM
• Consistent reads • Preserve functionality Why Shard?
Sharding Design Goals • Scale linearly • Increase capacity with
no downtime • Transparent to the application • Low administration to add capacity
Sharding and Documents • Rich documents reduce need for joins
• No joins makes sharding solvable
• Choose how you partition data • Convert from single
replica set to sharding with no downtime • Full feature set • Fully consistent by default Basics
Architecture client mongos ... mongos mongod mongod ... Shards mongod
mongod mongod Config Servers mongod mongod mongod mongod mongod mongod mongod client client client
Data Center Primary Data Center Secondary S1 p=1 S1 p=1
S1 p=0 S2 p=0 S3 p=0 S2 p=1 S3 p=1 S2 p=1 S3 p=1 Config 2 Config 2 Config 1 mongos mongos mongos mongos Typical Basic Setup
Range Based • collection is broken into chunks by range
• chunks default to 64mb or 100,000 objects
Choosing a Shard Key • Shard key determines how data
is partitioned • Hard to change • Most important performance decision
Use Case: Photos { photo_id : ???? , data :
<binary> } What’s the right key? • auto increment • MD5( data ) • month() + MD5(data)
Initial Loading • System start with 1 chunk • Writes
will hit 1 shard and then move • Pre-splitting for initial bulk loading can dramatically improve bulk load time
Administering a Cluster • Do not wait too long to
add capacity • Need capacity for normal workload + cost of moving data • Stay < 70% operational capacity
Hardware Considerations • Understand working set and make sure it
can fit in RAM • Choose appropriate sized boxes for shards • Too small and admin/overhead goes up • Too large, and you can’t add capacity smoothly
DEMO
Download MongoDB http://www.mongodb.org and let us know what you think
@eliothorowitz @mongodb 10gen is hiring! http://www.10gen.com/jobs
Use Case: User Profiles { email : “
[email protected]
” , addresses
: [ { state : “NY” } ] } • Shard by email • Lookup by email hits 1 node • Index on { “addresses.state” : 1 }
Use Case: Activity Stream { user_id : XXX, event_id :
YYY , data : ZZZ } • Shard by user_id • Looking up an activity stream hits 1 node • Writing even is distributed • Index on { “event_id” : 1 } for deletes