Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mongodb_web_application_-_MongoDC_2011.ppt.pdf
Search
mongodb
July 11, 2011
Programming
2
460
mongodb_web_application_-_MongoDC_2011.ppt.pdf
mongodb
July 11, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.3k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
510
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
520
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
490
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
Amazon RDS 向けに提供されている MCP Server と仕組みを調べてみた/jawsug-okayama-2025-aurora-mcp
takahashiikki
1
120
Azure SRE Agentで運用は楽になるのか?
kkamegawa
0
2.5k
複雑なフォームに立ち向かう Next.js の技術選定
macchiitaka
2
240
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
780
AIと私たちの学習の変化を考える - Claude Codeの学習モードを例に
azukiazusa1
11
4.4k
ファインディ株式会社におけるMCP活用とサービス開発
starfish719
0
2.1k
個人開発で徳島大学生60%以上の心を掴んだアプリ、そして手放した話
akidon0000
1
150
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
260
Zendeskのチケットを Amazon Bedrockで 解析した
ryokosuge
3
320
🔨 小さなビルドシステムを作る
momeemt
4
690
機能追加とリーダー業務の類似性
rinchoku
2
1.3k
Introducing ReActionView: A new ActionView-compatible ERB Engine @ Rails World 2025, Amsterdam
marcoroth
0
710
Featured
See All Featured
Music & Morning Musume
bryan
46
6.8k
Faster Mobile Websites
deanohume
309
31k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Agile that works and the tools we love
rasmusluckow
330
21k
How STYLIGHT went responsive
nonsquared
100
5.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
A Tale of Four Properties
chriscoyier
160
23k
Facilitating Awesome Meetings
lara
55
6.5k
KATA
mclloyd
32
14k
Docker and Python
trallard
46
3.6k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Transcript
http://mongodb.org http://10gen.com Building applications with MongoDB – An introduction MongoDC
– June 27, 2011 Nosh Petigara
[email protected]
@noshinosh
Today’s Talk • MongoDB: Data modeling, queries, geospatial, updates, map reduce
• Using a location-based app as an example • Example Works in MongoDB JS shell
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
Documents doc1 = { _id: 4b97e62bf1d8c7152c9ccb74, key1: value1, key2:
value2, key3: {..., ..., ...}, key4: [..., ..., ] }
Collections doc1, doc2, doc3 Places Users Checkins doc3, doc4, doc5
doc6, doc7, doc8
place1 = { name: "10gen HQ”, address: ”134 5th
Avenue 3rd Floor”, city: "New York”, zip: "10011” } db.places.find({zip:”10011”}).limit(10) Places v1
place1 = { name: "10gen HQ”, address: "17 West
18th Street 8th Floor”, city: "New York”, zip: "10011”, tags: [“business”, “recommended”] } db.places.find({zip:”10011”, tags:”business”}) Places v2
place1 = { name: "10gen HQ”, address: "17 West
18th Street 8th Floor”, city: "New York”, zip: "10011”, tags: [“business”, “cool place”], latlong: [40.0,72.0] } db.places.ensureIndex({latlong:”2d”}) db.places.find({latlong:{$near:[40,70]}}) Places v3
place1 = { name: "10gen HQ”, address: "17 West
18th Street 8th Floor”, city: "New York”, zip: "10011”, latlong: [40.0,72.0], tags: [“business”, “cool place”], tips: [ {user:"nosh", time:6/26/2010, tip:"stop by for office hours on Wednesdays from 4-6pm"}, {.....}, {.....} ] } Places v4
Creating your indexes db.places.ensureIndex({tags:1}) db.places.ensureIndex({name:1}) db.places.ensureIndex({latlong:”2d”}) Finding places: db.places.find({latlong:{$near:[40,70]}}) With
regular expressions: db.places.find({name: /^typeaheadstring/) By tag: db.places.find({tags: “business”}) Querying your Places
Initial data load: db.places.insert(place1) Updating tips: db.places.update({name:"10gen HQ"}, {$push :{tips:
{user:"nosh", time:6/26/2010, tip:"stop by for office hours on Wednesdays from 4-6"}}}}
$set, $unset, $rename $push, $pop, $pull, $addToSet $inc Atomic Updates
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
user1 = { name: “nosh” email: “
[email protected]
”, . . .
checkins: [4b97e62bf1d8c7152c9ccb74, 5a20e62bf1d8c736ab] } checkins [] = ObjectId reference to checkin collection Users
checkin1 = { place: “10gen HQ”, ts: 6/7/2011 10:12:00, userId:
<objectid of user> } Check-in = 2 ops Insert check in object [checkin collection] Update ($push) user object [user collection] Indexes: db.checkins.ensureIndex({place:1, ts:1}) db.checkins.ensureIndex({ts:1}) Checkins
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
Simple Stats db.checkins.find({place: “10gen HQ”) db.checkins.find({place: “10gen HQ”}) .sort({ts:-1}).limit(10) db.checkins.find({place:
“10gen HQ”, ts: {$gt: midnight}}).count() db.checkins.find().sort(ts:-1)}.limit(50)
Stats with MapReduce mapFunc = function() { emit(this.place, 1);} reduceFunc
= function(key, values) { return Array.sum(values); } db.checkins.mapReduce(mapFunc,reduceFunc, {query: {timestamp: {$gt:nowminus3hrs}}, out: “result”}) result = [{_id:”10gen HQ”, value: 17}, {…..}, {….}] db.result.find({ value: {$gt: 15}})
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
Single Master Deployments Primary/Master Secondary/Slave • Configure as a replica set
for automated failover • Add more secondaries to scale reads
Auto Sharded Deployment Primary/Master Secondary/Slave MongoS • Autosharding distributes data among
two or more replica sets • Mongo Config Server(s) handles distribution & balancing • Transparent to applications Mongo Config
Use Cases • RDBMS replacement for high-traffic web applications • Content Management-type
applications • Real-time analytics • High-speed data logging Web 2.0, Media, SaaS, Gaming, Finance, Telecom, Healthcare
Nosh Petigara
[email protected]
Director of Product Strategy, 10gen http://mongodb.org http://10gen.com
- We are hiring! - @mongodb
[email protected]
@noshinosh
MongoDB in Production