Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
mongodb_web_application_-_MongoDC_2011.ppt.pdf
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
mongodb
July 11, 2011
Programming
2
460
mongodb_web_application_-_MongoDC_2011.ppt.pdf
mongodb
July 11, 2011
Tweet
Share
More Decks by mongodb
See All by mongodb
NoSQL Now! 2012
mongodb
18
3.4k
MongoDB 2.2 At the Silicon Valley MongoDB User Group
mongodb
9
1.4k
Turning off the LAMP Hunter Loftis, Skookum Digital Works
mongodb
2
1.5k
Mobilize Your MongoDB! Developing iPhone and Android Apps in the Cloud Grant Shipley, Red Hat
mongodb
0
530
Beanstalk Data - MongoDB In Production Chris Siefken, CTO Beanstalk Data
mongodb
0
540
New LINQ support in C#/.NET driver Robert Stam, 10gen
mongodb
9
41k
Welcome and Keynote Aaron Heckman, 10gen
mongodb
0
510
Webinar Introduction to MongoDB's Java Driver
mongodb
1
1.2k
Webinar Intro to Schema Design
mongodb
4
1.8k
Other Decks in Programming
See All in Programming
AI巻き込み型コードレビューのススメ
nealle
0
120
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
130
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
150
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
CSC307 Lecture 08
javiergs
PRO
0
670
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
170
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
180
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
990
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
250
Apache Iceberg V3 and migration to V3
tomtanaka
0
150
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
6k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Navigating Team Friction
lara
192
16k
Tell your own story through comics
letsgokoyo
1
800
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
Faster Mobile Websites
deanohume
310
31k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
エンジニアに許された特別な時間の終わり
watany
106
230k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
200
Transcript
http://mongodb.org http://10gen.com Building applications with MongoDB – An introduction MongoDC
– June 27, 2011 Nosh Petigara
[email protected]
@noshinosh
Today’s Talk • MongoDB: Data modeling, queries, geospatial, updates, map reduce
• Using a location-based app as an example • Example Works in MongoDB JS shell
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
Documents doc1 = { _id: 4b97e62bf1d8c7152c9ccb74, key1: value1, key2:
value2, key3: {..., ..., ...}, key4: [..., ..., ] }
Collections doc1, doc2, doc3 Places Users Checkins doc3, doc4, doc5
doc6, doc7, doc8
place1 = { name: "10gen HQ”, address: ”134 5th
Avenue 3rd Floor”, city: "New York”, zip: "10011” } db.places.find({zip:”10011”}).limit(10) Places v1
place1 = { name: "10gen HQ”, address: "17 West
18th Street 8th Floor”, city: "New York”, zip: "10011”, tags: [“business”, “recommended”] } db.places.find({zip:”10011”, tags:”business”}) Places v2
place1 = { name: "10gen HQ”, address: "17 West
18th Street 8th Floor”, city: "New York”, zip: "10011”, tags: [“business”, “cool place”], latlong: [40.0,72.0] } db.places.ensureIndex({latlong:”2d”}) db.places.find({latlong:{$near:[40,70]}}) Places v3
place1 = { name: "10gen HQ”, address: "17 West
18th Street 8th Floor”, city: "New York”, zip: "10011”, latlong: [40.0,72.0], tags: [“business”, “cool place”], tips: [ {user:"nosh", time:6/26/2010, tip:"stop by for office hours on Wednesdays from 4-6pm"}, {.....}, {.....} ] } Places v4
Creating your indexes db.places.ensureIndex({tags:1}) db.places.ensureIndex({name:1}) db.places.ensureIndex({latlong:”2d”}) Finding places: db.places.find({latlong:{$near:[40,70]}}) With
regular expressions: db.places.find({name: /^typeaheadstring/) By tag: db.places.find({tags: “business”}) Querying your Places
Initial data load: db.places.insert(place1) Updating tips: db.places.update({name:"10gen HQ"}, {$push :{tips:
{user:"nosh", time:6/26/2010, tip:"stop by for office hours on Wednesdays from 4-6"}}}}
$set, $unset, $rename $push, $pop, $pull, $addToSet $inc Atomic Updates
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
user1 = { name: “nosh” email: “
[email protected]
”, . . .
checkins: [4b97e62bf1d8c7152c9ccb74, 5a20e62bf1d8c736ab] } checkins [] = ObjectId reference to checkin collection Users
checkin1 = { place: “10gen HQ”, ts: 6/7/2011 10:12:00, userId:
<objectid of user> } Check-in = 2 ops Insert check in object [checkin collection] Update ($push) user object [user collection] Indexes: db.checkins.ensureIndex({place:1, ts:1}) db.checkins.ensureIndex({ts:1}) Checkins
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
Simple Stats db.checkins.find({place: “10gen HQ”) db.checkins.find({place: “10gen HQ”}) .sort({ts:-1}).limit(10) db.checkins.find({place:
“10gen HQ”, ts: {$gt: midnight}}).count() db.checkins.find().sort(ts:-1)}.limit(50)
Stats with MapReduce mapFunc = function() { emit(this.place, 1);} reduceFunc
= function(key, values) { return Array.sum(values); } db.checkins.mapReduce(mapFunc,reduceFunc, {query: {timestamp: {$gt:nowminus3hrs}}, out: “result”}) result = [{_id:”10gen HQ”, value: 17}, {…..}, {….}] db.result.find({ value: {$gt: 15}})
Application Goals Places Check ins (1) Q: Current location A:
Places near location (2) Add user generated content (3) Record user checkins (4) Stats about checkins
Single Master Deployments Primary/Master Secondary/Slave • Configure as a replica set
for automated failover • Add more secondaries to scale reads
Auto Sharded Deployment Primary/Master Secondary/Slave MongoS • Autosharding distributes data among
two or more replica sets • Mongo Config Server(s) handles distribution & balancing • Transparent to applications Mongo Config
Use Cases • RDBMS replacement for high-traffic web applications • Content Management-type
applications • Real-time analytics • High-speed data logging Web 2.0, Media, SaaS, Gaming, Finance, Telecom, Healthcare
Nosh Petigara
[email protected]
Director of Product Strategy, 10gen http://mongodb.org http://10gen.com
- We are hiring! - @mongodb
[email protected]
@noshinosh
MongoDB in Production