Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
誤差逆伝播法/machine-learning-lecture-backpropagation
Search
monochromegane
July 17, 2020
Technology
0
7.3k
誤差逆伝播法/machine-learning-lecture-backpropagation
GMOペパボ新卒研修2020 機械学習入門 補足資料#06
monochromegane
July 17, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
ベクトル検索システムの気持ち
monochromegane
30
9.7k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
160
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
220
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
830
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
500
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
890
Go言語でMac GPUプログラミング
monochromegane
1
560
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1k
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
2.2k
Other Decks in Technology
See All in Technology
Cline、めっちゃ便利、お金が飛ぶ💸
iwamot
22
19k
Zabbixチョットデキルとは!?
kujiraitakahiro
0
140
.mdc駆動ナレッジマネジメント/.mdc-driven knowledge management
yodakeisuke
21
5.5k
大規模サービスにおける カスケード障害
takumiogawa
3
780
50人の組織でAIエージェントを使う文化を作るためには / How to Create a Culture of Using AI Agents in a 50-Person Organization
yuitosato
6
2.4k
Beyond {shiny}: The Future of Mobile Apps with R
colinfay
0
250
7,000名規模の 人材サービス企業における プロダクト戦略・戦術と課題 / Product strategy, tactics and challenges for a 7,000-employee staffing company
techtekt
0
230
SRE NEXT CfP チームが語る 聞きたくなるプロポーザルとは / Proposals by the SRE NEXT CfP Team that are sure to be accepted
chaspy
1
520
Cloud Native PG 使ってみて気づいたことと最新機能の紹介 - 第52回PostgreSQLアンカンファレンス
seinoyu
2
250
バックエンド留学した話/Backend study abroad story
kaonavi
0
140
FinOps_Demo
tkhresk
0
120
滑らかなユーザー体験も目指す注文管理のマイクロサービス化〜注文情報CSVダウンロード機能の事例〜
demaecan
0
140
Featured
See All Featured
How to Ace a Technical Interview
jacobian
276
23k
Unsuck your backbone
ammeep
670
57k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
31
4.8k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Scaling GitHub
holman
459
140k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Fireside Chat
paigeccino
37
3.4k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
12
1.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
12
640
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.4k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#06 (2020/07/03 Update) 誤差逆伝播法
2 2 ニューラルネットワークの 構造 線形から非線形へ
3 ニューラルネットワークの構造 3 *本資料では簡単のため、バイアス項は導入しない
4 ニューラルネットワークの構造 4
5 ニューラルネットワークの構造 5
6 ニューラルネットワークの構造 6
7 ニューラルネットワークの構造 7
8 ニューラルネットワークの構造 8
9 ニューラルネットワークの構造 9
10 ニューラルネットワークの構造 10
11 ニューラルネットワークの構造 11 活性化関数
12 ニューラルネットワークの構造 12
13 ニューラルネットワークの構造 13
14 14 誤差逆伝播法 デルタ!
15 誤差関数と偏微分 15 誤差関数 パラメータごとの偏微分
16 個別のパラメータごとに偏微分するの ではなく、出力層に近い層の偏微分の 結果を前の層に渡すことで各層でのパ ラメータの偏微分を行う。 誤差信号と呼ばれる値が出力から入力 の方向へ(逆向きに)伝播していくこと から名付けられている。 誤差逆伝播法
16 誤差逆伝播法
17 出力層のパラメータの偏微分 17
18 隠れ層のパラメータの偏微分 18
19 隠れ層のδは一つ先の層のδを使って 求めることができる。 隠れ層のδ 19 隠れ層のδ
20 隠れ層のδ 20 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
21 隠れ層のδ 21 活性化関数によって異なる
22 隠れ層のδ 22 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
23 出力層(はじめの)のδ 23 Lkはyk’(z2)の合成関数 活性化関数によって異なる 誤差
24 各層における入力xと重みとの線形結 合した結果であるzを保持する。これを パラメータの更新に用いる。 誤差逆伝播法によるパラメータの更新 24 順伝播
25 誤差逆伝播法によるパラメータの更新 25 出力層の誤差またはパラメータの値と 活性化関数の偏微分を用いて各層に おけるδを求める 逆伝播
26 誤差逆伝播法によるパラメータの更新 26 δとxからパラメータを更新する 逆伝播
27 * 誤差逆伝播法 27 誤差関数に対するパラメータの偏微分 パラメータの更新
28 参考: 活性化関数の微分 28 シグモイド関数 ReLU 実際はx=0の時は微分不可
29 29 参考
30 参考文献 30 本資料における誤差逆伝播法の導出は以下の文献を参考にしました。 より詳細、発展的な説明が必要であれば、精読し、理解を深めてみてください。 - スマートニュース株式会社 立石
賢吾, やさしく学ぶ ディープラーニングがわか る数学のきほん ~アヤノ&ミオと学ぶ ディープラーニングの理論と数学、実装~, マイナビ出版, 2019年07月31日. ISBN:978-4-8399-6837-3 - 斎藤 康毅, ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理 論と実装, オライリー・ジャパン, 2016年09月, ISBN:978-4-87311-758-4 - 新納 浩幸, Chainerによる実践深層学習, オーム社, 2016年09月, ISBN:978-4-274-21934-4