Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
誤差逆伝播法/machine-learning-lecture-backpropagation
Search
monochromegane
July 17, 2020
Technology
0
7.3k
誤差逆伝播法/machine-learning-lecture-backpropagation
GMOペパボ新卒研修2020 機械学習入門 補足資料#06
monochromegane
July 17, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
ベクトル検索システムの気持ち
monochromegane
32
10k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
160
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
230
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
850
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
510
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
910
Go言語でMac GPUプログラミング
monochromegane
1
570
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1k
迅速な学習機構を用いて逐次適応性を損なうことなく非線形性を扱う文脈付き多腕バンディット手法/extreme_neural_linear_bandits
monochromegane
0
2.2k
Other Decks in Technology
See All in Technology
Рекомендации с нуля: как мы в Lamoda превратили главную страницу в ключевую точку входа для персонализированного шоппинга. Данил Комаров, Data Scientist, Lamoda Tech
lamodatech
0
800
Amazon CloudWatch を使って NW 監視を行うには
o11yfes2023
0
180
30代からでも遅くない! 内製開発の世界に飛び込み、最前線で戦うLLMアプリ開発エンジニアになろう
minorun365
PRO
15
4.5k
AIにおけるソフトウェアテスト_ver1.00
fumisuke
1
220
OpenLane-V2ベンチマークと代表的な手法
kzykmyzw
0
110
Winning at PHP in Production in 2025
beberlei
1
190
4/17/25 - CIJUG - Java Meets AI: Build LLM-Powered Apps with LangChain4j (part 2)
edeandrea
PRO
0
130
「経験の点」の位置を意識したキャリア形成 / Career development with an awareness of the “point of experience” position
pauli
4
110
意思決定を支える検索体験を目指してやってきたこと
hinatades
PRO
0
270
C++26アップデート 2025-03
faithandbrave
0
1.1k
Cross Data Platforms Meetup LT 20250422
tarotaro0129
1
760
SnowflakeとDatabricks両方でRAGを構築してみた
kameitomohiro
1
470
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
46
14k
The Invisible Side of Design
smashingmag
299
50k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Bash Introduction
62gerente
611
210k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Why Our Code Smells
bkeepers
PRO
336
57k
The Pragmatic Product Professional
lauravandoore
33
6.6k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Code Reviewing Like a Champion
maltzj
523
40k
A designer walks into a library…
pauljervisheath
205
24k
Transcript
1 ペパボ研究所 三宅悠介 新卒研修 機械学習入門 補足資料#06 (2020/07/03 Update) 誤差逆伝播法
2 2 ニューラルネットワークの 構造 線形から非線形へ
3 ニューラルネットワークの構造 3 *本資料では簡単のため、バイアス項は導入しない
4 ニューラルネットワークの構造 4
5 ニューラルネットワークの構造 5
6 ニューラルネットワークの構造 6
7 ニューラルネットワークの構造 7
8 ニューラルネットワークの構造 8
9 ニューラルネットワークの構造 9
10 ニューラルネットワークの構造 10
11 ニューラルネットワークの構造 11 活性化関数
12 ニューラルネットワークの構造 12
13 ニューラルネットワークの構造 13
14 14 誤差逆伝播法 デルタ!
15 誤差関数と偏微分 15 誤差関数 パラメータごとの偏微分
16 個別のパラメータごとに偏微分するの ではなく、出力層に近い層の偏微分の 結果を前の層に渡すことで各層でのパ ラメータの偏微分を行う。 誤差信号と呼ばれる値が出力から入力 の方向へ(逆向きに)伝播していくこと から名付けられている。 誤差逆伝播法
16 誤差逆伝播法
17 出力層のパラメータの偏微分 17
18 隠れ層のパラメータの偏微分 18
19 隠れ層のδは一つ先の層のδを使って 求めることができる。 隠れ層のδ 19 隠れ層のδ
20 隠れ層のδ 20 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
21 隠れ層のδ 21 活性化関数によって異なる
22 隠れ層のδ 22 上流のδの数だけ足し合わせ Lはz2(z1)の合成関数
23 出力層(はじめの)のδ 23 Lkはyk’(z2)の合成関数 活性化関数によって異なる 誤差
24 各層における入力xと重みとの線形結 合した結果であるzを保持する。これを パラメータの更新に用いる。 誤差逆伝播法によるパラメータの更新 24 順伝播
25 誤差逆伝播法によるパラメータの更新 25 出力層の誤差またはパラメータの値と 活性化関数の偏微分を用いて各層に おけるδを求める 逆伝播
26 誤差逆伝播法によるパラメータの更新 26 δとxからパラメータを更新する 逆伝播
27 * 誤差逆伝播法 27 誤差関数に対するパラメータの偏微分 パラメータの更新
28 参考: 活性化関数の微分 28 シグモイド関数 ReLU 実際はx=0の時は微分不可
29 29 参考
30 参考文献 30 本資料における誤差逆伝播法の導出は以下の文献を参考にしました。 より詳細、発展的な説明が必要であれば、精読し、理解を深めてみてください。 - スマートニュース株式会社 立石
賢吾, やさしく学ぶ ディープラーニングがわか る数学のきほん ~アヤノ&ミオと学ぶ ディープラーニングの理論と数学、実装~, マイナビ出版, 2019年07月31日. ISBN:978-4-8399-6837-3 - 斎藤 康毅, ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理 論と実装, オライリー・ジャパン, 2016年09月, ISBN:978-4-87311-758-4 - 新納 浩幸, Chainerによる実践深層学習, オーム社, 2016年09月, ISBN:978-4-274-21934-4