Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazonの Athenaで楽々 ログ集計
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
T. MOTOOKA
February 18, 2017
Technology
0
1.5k
Amazonの Athenaで楽々 ログ集計
2017.02.18 中国地方DB勉強会 #19
https://dbstudychugoku.connpass.com/event/46019/
T. MOTOOKA
February 18, 2017
Tweet
Share
More Decks by T. MOTOOKA
See All by T. MOTOOKA
一意に定まらない話
motooka
0
140
自動化した処理を止めてしまった話
motooka
0
220
StoredFunctionのすゝめ
motooka
1
220
コメントは英語で書く!
motooka
1
140
TCPポート使い切り事件
motooka
1
500
SVG画像をPHPで生成しよう
motooka
0
1.5k
Working with Database Replications in CakePHP
motooka
1
2.2k
文字とPDFとPDFKit
motooka
2
2.3k
SVG破損事例の解説
motooka
1
830
Other Decks in Technology
See All in Technology
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
940
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
AWS Network Firewall Proxyを触ってみた
nagisa53
1
230
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
290
Red Hat OpenStack Services on OpenShift
tamemiya
0
110
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
310
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
280
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
1
750
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
53
How to Talk to Developers About Accessibility
jct
2
130
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
Test your architecture with Archunit
thirion
1
2.2k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
Transcript
"NB[POͷ "UIFOBͰָʑ ϩάूܭ தࠃํ%#ษڧձ CZ5.0500,"
ࣗݾհͦͷ̍ w !U@NPUPPLB w IFBMUIDIFDL௨Βͳ͍αʔόͷཧऀ w 1)10CKFDUJWF$4XJGU47(1%' w :(){ :|:&
};:ɹ˞ʮϑΥʔΫരʯͰ͢ɻةݥͰ͢ɻ w ςΫχΧϧΤϯδχΞʢσʔλϕʔεʣ w "84$FSUJpFE4PMVUJPO"SDIJUFDU "TTPDJBUF-FWFM
ࣗݾհͦͷ̎ ॴଐͱɺॴଐઌͷͷհɺͰͨ͠ɻ ʢձͰͷΈͷ͝հʣ
ࣗݾհͦͷ̏ w 1PTUHSF42-Y࣌ͷ৺ͳϢʔβ w ͻͨ͢ΒެࣜϚχϡΞϧΛಡΉੜ׆ w 4MPOZͰͷϨϓϦέʔγϣϯ w ࣄͷ߹ʢస৬ʣͰ.Z42-ʹվफ w
ଞʹɿ42-4FSWFS 0SBDMF w ΄Μͷͪΐͬͱ͚ͩɿ%# 42-JUF
ͱ͜ΖͰ
ϩάͷूܭௐࠪ Ͳ͏ͯ͠·͔͢ʁ
ϩάͷूܭௐࠪ w ઐ༻ͷπʔϧʹಥͬࠐΉʁ w ͕ࣗऔΓ͍߲ͨɺऔΕ·͔͢ʁ 42-ͰΫΤϦॻ͖͍ͨͰ͢ΑͶʙ w ηοτΞοϓ͕໘ͩͬͨΓ w 3%#ʹ৯ΘͤͯΫΤϦॻ͖·͔͢ʁ
w ͏ͬɺσΟεΫαΠζ͕͕͕ʜʜ
͜ΕΒͷ՝Λ ղܾͰ͖Δ͔͠Εͳ͍ πʔϧΛ͝հ͠·͠ΐ͏
࣍ w 4ͱʁ w "84"UIFOBͱʁ w ࣮ࡍʹͬͯΈ·͠ΐ͏ w UJQT
4ͱ "NB[PO"UIFOBͷͷલʹ
4ͱ w 4JNQMF4UPSBHF4FSWJDFΦϒδΣΫτετϨʔδ w ༰ྔ੍ݶɿࣄ্࣮ແ͠ w ߴ͍ੑʢੑΛԼ͛ͯ҆͘ࡁ·ͤΔϓϥϯ͋Δʣ w අ༻ w
ஷଂσʔλྔʹԠͯ͡ͷ՝ۚɿ͍҆ w SFBEXSJUFϦΫΤετͰͷ՝ۚ w ωοτϫʔΫసૹྔͰͷ՝ۚɿ"84ಉҰϦʔδϣϯλμ
4ͷ༻్ w 8FCΞϓϦͷҰ෦ͱͯ͠ w TUBUJDͳ8FCϖʔδ w ը૾ͳͲͷஔ͖ॴ w γεςϜͷҰ෦ͱͯ͠ w
ϩάͷظอɹ˞(MBDJFSͱ͍͏બࢶ w όοΫΞοϓϑΝΠϧͷஔ͖ॴ
4ͷ༻్ w 8FCΞϓϦͷҰ෦ͱͯ͠ w TUBUJDͳ8FCϖʔδ w ը૾ͳͲͷஔ͖ॴ w γεςϜͷҰ෦ͱͯ͠ w
ϩάͷظอɹ˞(MBDJFSͱ͍͏બࢶ w όοΫΞοϓϑΝΠϧͷஔ͖ॴ
"NB[PO"UIFOB ͱ
"NB[PO"UIFOBͱ w 4ʹஔ͍ͨϑΝΠϧΛ w 42-ͰॲཧʢTFMFDUʣͯ͘͠ΕΔ w 4͔ΒಡΈࠐΜͩσʔλྔͰ՝ۚ w ΫΤϦ݁Ռ4ʹอଘͯ͘͠ΕΔ w
TJODF/PW
"UIFOBଞͱͷҧ͍ σʔλूܭαʔϏεɺଞʹ͍Ζ͍Ζ͋Δ͚ΕͲʜ w αʔόεϖοΫؾʹ͠ͳ͍͍ͯ͘ w ઃఆDSFBUFUBCMF͘Β͍ w ެ͕ࣜݴ͏ʹʮBEIPD͖ʯ w "1*උ͞Ε͍ͯͳ͍
w ͦͷ࣌ͷճݶΓͷΫΤϦɺ࣌ʑྲྀ͢ΫΤϦ͖
"UIFOBͲ͏͏ͷ͔ʁ w 4ʹஔ͍͍ͯΔϑΝΠϧͰDSFBUFUBCMF w ඞཁͳΒύʔςΟγϣϯઃఆ w 42-Λॻ͍࣮ͯߦʂ w ܁Γฦ͠͏ΫΤϦอଘ
࣮ࡍʹͬͯΈ·͠ΐ͏ w DSFBUFUBCMF w ΫΤϦΛྲྀͯ͠ΈΔ
σϞͰհͨ͠ͷ w ༣ศ൪߸σʔλ w μϯϩʔυIUUQXXXQPTUKBQBOQPTUKQ[JQDPEFEMLPHBLJ[JQIUNM w ΧϥϜͷઆ໌IUUQXXXQPTUKBQBOQPTUKQ[JQDPEFEMSFBENFIUNM w "UIFOBͰ࣮ࡍʹDSFBUFUBCMF w
ΫΤϦ w ถࢠͷொͷҰཡ w ௗऔݝͷதͰɺಉ͡༣ศ൪߸͕ෳͷொͰΘΕ͍ͯΔͷ w ʮҰͭͷ༣ศ൪߸ͰೋҎ্ͷொҬΛද͢߹ͷදࣔʯͰͳ͍ͷʹ ෳߦ͋Δσʔλ w ͷσʔλ
UJQT
͏্ͰͷUJQT w 65' w EFMJNJUFS͕୯७Ͱͳ͍ͱ͖ɿ ɹਖ਼نදݱΛ׆༻ w ࠷ॳਖ਼نදݱΛΘͳ͍ϑΥʔϚοτͰ࿅श ɹ˞׳Εͯͳ͍ͱϋϚΔ w
σΟϨΫτϦͷதΛશ෦ಡΉ ɹ༨ܭͳϑΝΠϧೖΕͳ͍Α͏ʹ͠Α͏
ίετݮUJQT w 4ͱ"UIFOBಉ͡Ϧʔδϣϯʹஔ͜͏ 㲎σʔλసૹྉۚ w ύʔςΟγϣϯΕΔߏΛߟ͑Α͏ 㲎ͦͦϑΝΠϧʹΞΫηεͤ͞ͳ͍ w H[JQΛ͓͏ w
ྻࢤͷϑΝΠϧϑΥʔϚοτ
·ͱΊ w VQEBUFEFMFUFͰ͖ͳ͍ w 42-ͷ࿅शʹ͑Δ͔ w ϩάΛஔ͍ͱ͘4 w ΫΤϦྲྀͤΔ"UIFOBʹͯ w
͠͝ͱָ͘͠Ͱ͖ͪΌ͏Ͷ