$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ネットワーク分析してみた
Search
なごみそ
June 26, 2019
Programming
2
490
ネットワーク分析してみた
NetworkXを使ってネットワークの分析をしてみたお話です.
(2019-06-27: おまけをつけました)
なごみそ
June 26, 2019
Tweet
Share
More Decks by なごみそ
See All by なごみそ
デレマス呼称表から見える アイドルの関係(?)
nagomiso
1
1.2k
ちょっとかしこく生きよう
nagomiso
0
610
JUMAN++で分かち書きをしたかった...
nagomiso
0
81
さよなら Storm
nagomiso
0
43
ここが変だよ Apache Storm
nagomiso
0
21
Other Decks in Programming
See All in Programming
GISエンジニアから見たLINKSデータ
nokonoko1203
0
180
Basic Architectures
denyspoltorak
0
100
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
130
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
120
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
140
SwiftUIで本格音ゲー実装してみた
hypebeans
0
490
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
150
AIエージェントの設計で注意するべきポイント6選
har1101
5
2.1k
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
130
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
280
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
110
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
For a Future-Friendly Web
brad_frost
180
10k
Prompt Engineering for Job Search
mfonobong
0
120
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Navigating Team Friction
lara
191
16k
GraphQLとの向き合い方2022年版
quramy
50
14k
sira's awesome portfolio website redesign presentation
elsirapls
0
89
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
16
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
0
94
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
34
Transcript
ネットワーク分析してみた 2019-06-26 なごみそ@Kawasaki.rb#73
Kawasaki.rb 6周年 おめでとうございます
自己紹介 •なごみそ(@NagominHotMotto) •仕事: お盆と年末に有明で戦うこと.
ネットワーク分析 •対象をネットワーク構造(=グラフ)として 表現してその特性を分析すること. - e.g., • PageRankによるページの重要度付け • SNSにおいて影響力があるユーザを探す など
グラフとは •頂点 (vertex, node), 辺 (edge), 点と辺の対応付け からなる構造のこと. • 数学的には以下の3つ組
(V, E, Ψ) のこと. - 点集合: V - 辺集合: E - 対応付: v u w 辺 頂点
プログラムでグラフを扱う NetworkX • Pythonでグラフを扱うライブラリ. • ほぼPure Pythonで実装されている. - Numpy, Scipyもあまり使われていない.
- 大規模グラフを扱うときはGraphXとかNeo4jとかを使ったほうがよい. • ちなみに - SciRubyにはnetworkx.rbなるライブラリがある!!! - でも眺めた感じはまだ機能が少ない.
NetworkXでのグラフ定義 とっても簡単 import networkx as nx G = nx.Graph() #
Vertexの追加. G.add_node('u') G.add_node('v') G.add_node('w') # Edgeの追加, 点と辺の対応付け. G.add_edge('u', 'v') G.add_edge('u', 'w') # 点集合. print(G.nodes) # => ['u', 'v', 'w'] # 辺集合. print(G.edges) # => [('u', 'v'), ('u', 'w')] v u w
NetworkXでできること(一部紹介) •最短経路探索 - 点uから点vに到達するまでに辿る最短経路を見つける. •グラフ同士の類似度算出 - グラフ同士がどれだけ似ているかの指標を算出する. •中心性算出 - 各点を特徴づける指標を算出する.
NetworkXでできること(一部紹介) •最短経路探索 - 点uから点vに到達するまでに辿る最短経路を見つける. •グラフ同士の類似度算出 - グラフ同士がどれだけ似ているかの指標を算出する. •中心性算出 - 各点を特徴づける指標を算出する.
中心性: 次数中心性 •頂点に接続された辺の数(次数)で決まる指標. •直接繋がりが多い頂点が中心. # 次数中心性. centrality = nx.degree_centrality(G) print(centrality['u'])
# => 2/2 = 1.0 print(centrality['v']) # => 1/2 = 0.5 print(centrality['w']) # => 1/2 = 0.5 v u w
中心性: 近接中心性 •他の頂点との距離が近いほど高くなる指標. •どの頂点からも平均的に近い頂点が中心. # 近接中心性. centrality = nx.closeness_centrality(G) print(centrality['u'])
# => 2/(1+1) = 1.0 print(centrality['v']) # => 2/(1+2) = 0.666 print(centrality['w']) # => 2/(1+2) = 0.666 v u w
中心性: 媒介中心性 •頂点を通る経路が多いほど高くなる指標. •他の頂点へ繋がる際多く経由される頂点が中心. # 媒介中心性. centrality = nx.betweenness_centrality(G) print(centrality['u'])
# => 1/1 = 1.0 print(centrality['v']) # => 0.0 print(centrality['w']) # => 0.0 v u w
実践(?) 346プロダクションの人間関係を見てみる
346プロの人間関係を見てみる 利用データ • アイドルマスターシンデレラガールズ呼称表 (参考: https://cgcall.negipo.cc/) - 346プロ所属アイドル同士の呼称が記載されている. • e.g.,
- 島村卯月 → 渋谷凛 = 凛ちゃん - 渋谷凛 → 島村卯月 = 卯月 • 呼称データが存在するアイドルは交流があると考える. - 「頂点=アイドル」, 「辺=呼称有り関係」のネットワーク.
346プロの中心人物は誰か? •ネットワークから中心性を算出. •中心性から346プロ内における交流のコア人物を 見つける. 注意 • あくまで一指標(中心性)で見るとどうかの話です. • 特定のアイドルに対する絶対的な評価とはなりません.
中心性トップ10 順位 次数中心性 近接中心性 媒介中心性 1 本田未央 1.0160 川島瑞樹 0.5593
本田未央 0.0671 2 諸星きらり 0.4894 諸星きらり 0.5576 乙倉悠貴 0.0269 3 大槻唯 0.4840 白坂小梅 0.5510 双葉杏 0.0261 4 川島瑞樹 0.4787 堀裕子 0.5461 前川みく 0.0225 5 多田李衣菜 0.4628 西園寺琴歌 0.5444 脇山珠美 0.0219 6 小早川紗枝 0.4521 島村卯月 0.5397 藤原肇 0.0214 7 堀裕子 0.4362 安部菜々 0.5397 川島瑞樹 0.0212 8 島村卯月 0.4309 大槻唯 0.5365 堀裕子 0.0202 9 渋谷凛 0.4309 小早川紗枝 0.5365 大槻唯 0.0195 10 藤原肇 0.4202 佐久間まゆ 0.5365 西園寺琴歌 0.0180 コミュ力が高そうなアイドルが上位にいる
中心性トップ10 順位 次数中心性 近接中心性 媒介中心性 1 本田未央 1.0160 川島瑞樹 0.5593
本田未央 0.0671 2 諸星きらり 0.4894 諸星きらり 0.5576 乙倉悠貴 0.0269 3 大槻唯 0.4840 白坂小梅 0.5510 双葉杏 0.0261 4 川島瑞樹 0.4787 堀裕子 0.5461 前川みく 0.0225 5 多田李衣菜 0.4628 西園寺琴歌 0.5444 脇山珠美 0.0219 6 小早川紗枝 0.4521 島村卯月 0.5397 藤原肇 0.0214 7 堀裕子 0.4362 安部菜々 0.5397 川島瑞樹 0.0212 8 島村卯月 0.4309 大槻唯 0.5365 堀裕子 0.0202 9 渋谷凛 0.4309 小早川紗枝 0.5365 大槻唯 0.0195 10 藤原肇 0.4202 佐久間まゆ 0.5365 西園寺琴歌 0.0180 その中でもちゃんみおがブッチギリ コミュ力が高そうなアイドルが上位にいる
•明らかに本田未央の中心性が高い. 中心性の分布を見てみる ちゃんみお 0.5111
•ちなみに私の推しである土屋亜子さんは…… 中心性の分布を見てみる 亜子 0.4221 0.0904 0.001230
None
その他(2019年実装の新人たち) •白雪千夜, 黒崎ちとせ, 久川颯, 夢見りあむは媒介 中心性が0.00だった. •砂塚あきらが孤立頂点になっていて中心性が算 出できなかった. •辻野あかりの媒介中心性はなんと新田美波より 高い.
- 夢見りあむとその他の346プロメンバーの橋渡しに なっている.
まとめ • NetworkXを使うと簡単にネットワーク分析ができる. - 関数一つでパッと各種計算が可能. • 中心性を計算するとコミュ力が高そうなアイドルが上 位に来ていた. • ちゃんみおが346プロにおける交流の要・中心人物?
- 色々なアイドルの橋渡し的な存在. • 土屋亜子さんは交流の中心にはなれていない模様…… • 新実装アイドルたちは今後の交流に期待.
おまけ 選挙順位と中心性の散布図を描いてみた. ランクインするほど人気があるアイドルは やはり一定以上他のアイドルと交流がある模様 なーちゃんとりあむの ランクインはやはり特殊