Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ちょっとかしこく生きよう
Search
なごみそ
May 23, 2018
Technology
0
610
ちょっとかしこく生きよう
※2018-05-23 23:50 式が間違っていたので修正。
なごみそ
May 23, 2018
Tweet
Share
More Decks by なごみそ
See All by なごみそ
デレマス呼称表から見える アイドルの関係(?)
nagomiso
1
1.2k
ネットワーク分析してみた
nagomiso
2
490
JUMAN++で分かち書きをしたかった...
nagomiso
0
78
さよなら Storm
nagomiso
0
41
ここが変だよ Apache Storm
nagomiso
0
18
Other Decks in Technology
See All in Technology
エンタープライズ企業における開発効率化のためのコンテキスト設計とその活用
sergicalsix
1
390
Lazy Constant - finalフィールドの遅延初期化
skrb
0
190
Flutter DevToolsで発見! 本番アプリのパフォーマンス問題と改善の実践
goto_tsl
1
590
プログラミング言語を書く前に日本語を書く── AI 時代に求められる「言葉で考える」力/登壇資料(井田 献一朗)
hacobu
PRO
0
160
コミュニティと共に変化する 私とFusicの8年間
ayasamind
0
470
QAエンジニアがプロダクト専任で チームの中に入ると。。。?/登壇資料(杉森 太樹)
hacobu
PRO
0
240
CDKの魔法を少し解いてみる ― synth・build・diffで覗くIaCの裏側 ―
takahumi27
1
150
“それなりに”安全なWebアプリケーションの作り方
xryuseix
0
370
探求の技術
azukiazusa1
7
2.1k
旧から新へ: 大規模ウェブクローラの Perl から Go への移行 / YAPC::Fukuoka 2025
motemen
3
870
X-Ray SDKとDaemonのサポート終了と移⾏ガイド
o11yfes2023
0
100
Proxmox × HCP Terraformで始めるお家プライベートクラウド
lamaglama39
1
200
Featured
See All Featured
Speed Design
sergeychernyshev
32
1.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Mobile First: as difficult as doing things right
swwweet
225
10k
Navigating Team Friction
lara
190
15k
Rails Girls Zürich Keynote
gr2m
95
14k
Balancing Empowerment & Direction
lara
5
740
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Code Review Best Practice
trishagee
72
19k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Transcript
ちょっとかしこく生きよう なごみそ@Kawasaki.rb 60th
自己紹介 • 名前: なごみそ(@NagominHotMotto) • 仕事: 夏と冬に有明周辺で戦うこと • 副業: SEっぽいことをしています
使用できるロッカーも変更になるため ロッカーの再割当てが必要になった 社内の席替え
会社から出てきた割当案が あまりにも ク◦ だった
何が ク◦ だったか
何が◦ソだったか • 思考を完全停止させた配置 – 社員番号順に配置させただけ • 自席とロッカーが 遠い ここ◦ソ
頭にきたのでロッカーの割当を 数理最適化 するプログラムを作った
数理最適化してみた ロッカーの割当てを 整数計画問題 にした – 線形計画問題(Integer Programming; IP): • 目的関数が線形関数で表現できて変数ベクトルの
要素が整数のみ かつ制約条件が線形関数と不等式で表現できる問題
どんなことをしたか • 式を作る • 座席とロッカーの座標情報を取得する • ソルバーで解く
どんなことをしたか • 式を作る • 座席とロッカーの座標情報を取得する • ソルバーで解く
式を作る • もろもろ定義 – 座席: – ロッカー: – 定数: –
変数:
式を作る • 目的関数 – 全員の座席からロッカーまでの距離総和 – これが最小になる x を探す
式を作る • 制約条件 – ロッカーはひとり必ず1個割当てる – ロッカー1区画にはn人まで割当てられる
どんなことをしたか • 式を作る • 座席とロッカーの座標情報を取得する • ソルバーで解く
座席とロッカーの 座標情報を取得する • 座席とロッカーの地図はExcel製(ここもク◦) • Pandas + Xlrd でデータフレームとして読込み •
データフレームの0行0列要素を原点として 座席とロッカーの座標を取得 さくら いずみ うづき りん あこ みお ロッカーA ロッカーB さくら=(0,1) いずみ=(1,1) あここ=(0,2) ロッカーA=(0,6) ロッカーB=(1,6) S L
どんなことをしたか • 式を作る • 座席とロッカーの座標情報を取得する • ソルバーで解く
ソルバーで解く • PuLP ( https://pythonhosted.org/PuLP/) • Python用の線形計問題最適化モジュール • 作って式を違和感なくコード化できる(と思った)
直感的(?) x = { (l, s): pulp.LpVariable( name='{}:{}'.format(l, s), lowBound=0,
upBound=1, cat=pulp.LpInteger ) for l, s in product(L, S) }
直感的(?) problem += pulp.lpSum( c[l, s] * x[l, s] for
l, s in product(L, S) ), 'TotalDistance'
直感的(?) for l in L: problem += \ sum(x[l, s]
for s in s) <= n, \ 'Constraint_leq_{}'.format(l)
最近はあんまりメンテされていないみたい
本当に席に近いロッカーを 手に入れられたのか?
こたえ 微妙でした
反省 • 総和でしか評価していないのでバラツキがある – 遠いヒトと近いヒトがいる(私は遠かった……) • 忖度できていない – エラいヒトも問答無用で遠い場所に配置
ちょっとかしこく生きよう • 何気ない身近な問題を技術でカイゼンできた • 思考停止は誰も幸せにならないよね – 歩く距離が伸びて疲れる...... – 人手で割当てるの面倒くさい...... •
要改善点 – バラツキを考慮する – 忖度できるように条件を考える
おしまい