Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
Search
akihiro
September 30, 2018
Technology
0
700
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
akihiro
September 30, 2018
Tweet
Share
More Decks by akihiro
See All by akihiro
DLLAB製造分科会パートナー企業向け参加説明会
nakihiro
0
550
DLLAB製造分科会 課題テーマ(トヨタ紡織株式会社)
nakihiro
1
580
Deep Learning Lab ご紹介
nakihiro
1
640
_DLLAB_分科会概要説明資料201808.pdf
nakihiro
1
580
Other Decks in Technology
See All in Technology
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
6.3k
AIと融ける人間の冒険
pujisi
0
120
人工知能のための哲学塾 ニューロフィロソフィ篇 第零夜 「ニューロフィロソフィとは何か?」
miyayou
0
430
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
320
わが10年の叡智をぶつけたカオスなクラウドインフラが、なくなるということ。
sogaoh
PRO
1
500
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
Digitization部 紹介資料
sansan33
PRO
1
6.5k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
140
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
Eight Engineering Unit 紹介資料
sansan33
PRO
0
6.2k
I tried making a solo advent calendar!
zzzzico
0
150
Featured
See All Featured
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
280
The World Runs on Bad Software
bkeepers
PRO
72
12k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
220
KATA
mclloyd
PRO
33
15k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
Typedesign – Prime Four
hannesfritz
42
2.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
46
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
120
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
790
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
分科会での検討テーマ 株式会社ミスミグループ本社 DLラボ分科会資料 参加社限
1.会社紹介 参加社限 事業 • B2B「生産材プラットフォーム」 • メーカー事業(FA事業/金型部品事業) • 流通事業 事業特徴
• 少量多品種 • 2,070万点、800垓バリエーション (1垓=1兆 * 1億) • 3,324メーカー • 「確実短納期一個流し」 設立 1963年2月23日 売上高(連結) 312,969百万円※2018年3月期 従業員数(連結) 11,241名※2018年3月末日時点 株式会社ミスミグループ本社 「ものづくりの、明日を支える。」 ▼ECサイト「MiSUMi-VONA」https://jp.misumi-ec.com/
2.業務課題① 参加社限 数年前に廃番となったアイテムの構造化データが一部未整備、廃番品データを 活用した施策(代替品提案、顧客分析)を打ちきれない 構造化データになっていない廃番品情報は過去の紙カタログからの抽出が必要 構造化/ 半構造化 データ
過去の 紙カタログ 商品マスタ ECサイト 廃番… 廃番になった 商品情報抽出 代替品提案 ※廃番品検索時すべて 代替品提案※一部未対応 ASIS TOBE 今回検証したいエリア 複雑に並ぶ 複数の情報 通常の辞書には のりにくい文字列
2.業務課題① 課題名 概要 AIへの期待 カタログからの 商品情報抽出 • 過去の紙カタログから廃番品情 報を抽出し施策につなげたい •
紙カタログ内には複数の情報が 複雑に並ぶ • 通常の辞書にはのりにくい文字 列が含まれる • 紙カタログ内のページ種別の識別 • 商品ページ内情報エリアの識別 • 情報エリアごとに文字情報を抽出 • 情報種類に合わせた文字記号識別 主要データ 値 備考 商品紙カタログ • 1冊あたり数百~2千ページ前後 • 現行版12冊:デジタルデータ提供可能 • 過去版:現物(紙)提供可能 今回の検証時には、構造化デー タ整備されている現行版の利用 を考えています 構造化商品デー タ • 当社商品マスタ内の商品データ(精度 検証に用いるカテゴリ・商品に限る) 精度検証への利用を想定 参加社限
3.ベネフィット想定 参加社限 廃番品情報活用ケースおよび効果は以下を想定 1. ECサイト上で廃番品が検索された際に類似スペック代替品を提案 • 機会損失抑止 2. 廃番品を過去にご購入いただいた顧客の購買行動分析 •
マーケティング施策利用による売上向上
4.その他提供資料(カタログ例1) 参加社限
4.その他提供資料(カタログ例2) 参加社限