Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
akihiro
September 30, 2018
Technology
0
700
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
akihiro
September 30, 2018
Tweet
Share
More Decks by akihiro
See All by akihiro
DLLAB製造分科会パートナー企業向け参加説明会
nakihiro
0
550
DLLAB製造分科会 課題テーマ(トヨタ紡織株式会社)
nakihiro
1
580
Deep Learning Lab ご紹介
nakihiro
1
650
_DLLAB_分科会概要説明資料201808.pdf
nakihiro
1
580
Other Decks in Technology
See All in Technology
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
540
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
1
250
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
440
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
230
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
120
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
20260204_Midosuji_Tech
takuyay0ne
1
160
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
230
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
620
Featured
See All Featured
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Fireside Chat
paigeccino
41
3.8k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
53
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
57
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
70
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
250
Agile that works and the tools we love
rasmusluckow
331
21k
Marketing to machines
jonoalderson
1
4.7k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
Transcript
分科会での検討テーマ 株式会社ミスミグループ本社 DLラボ分科会資料 参加社限
1.会社紹介 参加社限 事業 • B2B「生産材プラットフォーム」 • メーカー事業(FA事業/金型部品事業) • 流通事業 事業特徴
• 少量多品種 • 2,070万点、800垓バリエーション (1垓=1兆 * 1億) • 3,324メーカー • 「確実短納期一個流し」 設立 1963年2月23日 売上高(連結) 312,969百万円※2018年3月期 従業員数(連結) 11,241名※2018年3月末日時点 株式会社ミスミグループ本社 「ものづくりの、明日を支える。」 ▼ECサイト「MiSUMi-VONA」https://jp.misumi-ec.com/
2.業務課題① 参加社限 数年前に廃番となったアイテムの構造化データが一部未整備、廃番品データを 活用した施策(代替品提案、顧客分析)を打ちきれない 構造化データになっていない廃番品情報は過去の紙カタログからの抽出が必要 構造化/ 半構造化 データ
過去の 紙カタログ 商品マスタ ECサイト 廃番… 廃番になった 商品情報抽出 代替品提案 ※廃番品検索時すべて 代替品提案※一部未対応 ASIS TOBE 今回検証したいエリア 複雑に並ぶ 複数の情報 通常の辞書には のりにくい文字列
2.業務課題① 課題名 概要 AIへの期待 カタログからの 商品情報抽出 • 過去の紙カタログから廃番品情 報を抽出し施策につなげたい •
紙カタログ内には複数の情報が 複雑に並ぶ • 通常の辞書にはのりにくい文字 列が含まれる • 紙カタログ内のページ種別の識別 • 商品ページ内情報エリアの識別 • 情報エリアごとに文字情報を抽出 • 情報種類に合わせた文字記号識別 主要データ 値 備考 商品紙カタログ • 1冊あたり数百~2千ページ前後 • 現行版12冊:デジタルデータ提供可能 • 過去版:現物(紙)提供可能 今回の検証時には、構造化デー タ整備されている現行版の利用 を考えています 構造化商品デー タ • 当社商品マスタ内の商品データ(精度 検証に用いるカテゴリ・商品に限る) 精度検証への利用を想定 参加社限
3.ベネフィット想定 参加社限 廃番品情報活用ケースおよび効果は以下を想定 1. ECサイト上で廃番品が検索された際に類似スペック代替品を提案 • 機会損失抑止 2. 廃番品を過去にご購入いただいた顧客の購買行動分析 •
マーケティング施策利用による売上向上
4.その他提供資料(カタログ例1) 参加社限
4.その他提供資料(カタログ例2) 参加社限