Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DLLAB製造分科会 課題テーマ(トヨタ紡織株式会社)
Search
akihiro
September 30, 2018
Technology
1
580
DLLAB製造分科会 課題テーマ(トヨタ紡織株式会社)
DLLAB製造分科会 課題テーマ(トヨタ紡織株式会社)
akihiro
September 30, 2018
Tweet
Share
More Decks by akihiro
See All by akihiro
DLLAB製造分科会パートナー企業向け参加説明会
nakihiro
0
550
DLLAB製造分科会 課題テーマ(株式会社ミスミグループ本社)
nakihiro
0
690
Deep Learning Lab ご紹介
nakihiro
1
620
_DLLAB_分科会概要説明資料201808.pdf
nakihiro
1
580
Other Decks in Technology
See All in Technology
AWS環境のリソース調査を Claude Code で効率化 / aws investigate with cc devio2025
masahirokawahara
2
1.4k
AI エージェントとはそもそも何か? - 技術背景から Amazon Bedrock AgentCore での実装まで- / AI Agent Unicorn Day 2025
hariby
4
1.2k
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
590
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
170
フィンテック養成勉強会#56
finengine
0
130
Grafana MCPサーバーによるAIエージェント経由でのGrafanaダッシュボード動的生成
hamadakoji
1
1.4k
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
340
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
580
Codeful Serverless / 一人運用でもやり抜く力
_kensh
6
310
クラウドセキュリティを支える技術と運用の最前線 / Cutting-edge Technologies and Operations Supporting Cloud Security
yuj1osm
2
290
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
0
120
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
0
360
Featured
See All Featured
Writing Fast Ruby
sferik
628
62k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Gamification - CAS2011
davidbonilla
81
5.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
The Invisible Side of Design
smashingmag
301
51k
How GitHub (no longer) Works
holman
315
140k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Fireside Chat
paigeccino
39
3.6k
Music & Morning Musume
bryan
46
6.8k
How to Ace a Technical Interview
jacobian
279
23k
Transcript
2-1.課題テーマ① DLラボ分科会 課題テーマ説明 2018年09月28日 トヨタ紡織株式会社 1
2-1.課題テーマ① 3Dデータ × 部品名 インプット 部品形状 × 部品名 学習 多方向アングル
スナップショット × 部品名 課題設定テーマ テーマ 3Dを教師データとした部品・仕掛品・製品の物体認識 概要 AIへの期待 背景 やりたいこと デジタルツインによる高効率な生産を目指して、 AI技術を活用し工場内全ての部品の動きや 作業状況のトラッキングなどしていきたいが、 全部品、全製品へのアノテーションは非現実である。 ※1シート製品に含まれる部品は300点 × 教師数 製品設計の成果物である3Dデータに対して、 多方向アングルでのスナップショットにより形状を学習 ↓ アノテーション作業無く(少なく) 工場内の部品・仕掛品・製品を物体認識させたい 工場内 動画 インプット 部品形状 × 部品名 部品名 アウトプット 推論