Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
公平性を保証したAI/機械学習 アルゴリズムの最新理論
Search
Kazuto Fukuchi
November 06, 2018
Research
0
16
公平性を保証したAI/機械学習 アルゴリズムの最新理論
第21回情報論的学習理論ワークショップ, 2018.11.4〜7, 札幌(かでる2.7・北大)の企画セッション:学習理論 で発表した講演のスライドです.
Kazuto Fukuchi
November 06, 2018
Tweet
Share
More Decks by Kazuto Fukuchi
See All by Kazuto Fukuchi
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
nanofi
3
360
機械学習アルゴリズムに潜む不公平なバイアスとその理論
nanofi
0
19
公平性を保証したAI/機械学習アルゴリズムの最新理論
nanofi
0
17
Other Decks in Research
See All in Research
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
190
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
580
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
3
740
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
130
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
260
3次元点群の分類における評価指標について
kentaitakura
0
410
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
240
snlp2024_multiheadMoE
takase
0
430
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
3
160
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
380
授業評価アンケートのテキストマイニング
langstat
1
360
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
510
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Side Projects
sachag
452
42k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
What's in a price? How to price your products and services
michaelherold
243
12k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
740
Testing 201, or: Great Expectations
jmmastey
38
7.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
KATA
mclloyd
29
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Transcript
ެฏੑʹֶྀͨ͠शͱͦͷ ཧత՝ *#*4 اըηογϣϯֶशཧ ɹҰే ཧݚ"*1 LB[VUPGVLVDIJ!SJLFOKQ 1
֓ཁ ػցֶशʹ͓͚Δެฏੑ 'BJSOFTT w ެฏੑ͕͞Ε͍ͯΔ !2 '"5.- ެฏੑͷϫʔΫγϣοϓ JO/*14
*$.- ,%% "$.'"5 ެ ฏ ੑ ͷ ࠃ ࡍ ձ ٞ *OWJUFEUBMLT w*$.- -4XFFOFZ w/*14 ,$SBXGPSE w,%% $%XPSL w,%% +.8JOH
֓ཁ w ຊߨԋͷ༰ w ެฏੑʹ·ͭΘΔٙ w ެฏੑͱʁ w ՝
Կ͕Ͱ͖Δͱخ͍͠ͷ͔ʁ w ಛʹཧతղੳʹ͓͚Δ՝Λத৺ʹհ !3
࣍ w ެฏੑͱ w ެฏੑͷݪҼͱެฏੑఆٛ w ूஂެฏੑ w ूஂެฏੑͷཧత՝
w ݸਓެฏੑ w ݸਓެฏੑͷཧత՝ w ࠷ۙͷల։ͱͦͷཧత՝ !4
ެฏੑ 'BJSOFTT w ػցֶश͕ҙࢥܾఆʹ༻͍ΒΕ͍ͯΔ w ҙࢥܾఆ͕ࠩผΛੜΉՄೳੑ͕͋Δ !5 ࠾༻ ৴༻είΞ ೖࢼ
อݥྉ ݸਓ உੑ ঁੑ
ࠩผతࠂ<4XFFOZ> w lHPPHMFDPNͱSFVUFSTDPNͰਓ໊ͷݕࡧͰදࣔ͞ΕΔࠂΛूܭ w ظ݄݄ؒ w ݸͷࠂΛऩू ΞϑϦΧܥͷ໊લ Ϥʔϩούܥͷ໊લ ωΨςΟϒͳࠂ
தཱతͳࠂ "SSFTUFE -PDBUFE !6
ࠩผతࠂ<4XFFOZ> w ͷࠂ͕lJOTUBOUDIFDLNBUFz ൜ࡑྺݕࡧαΠτ w JOTUBOUDIFDLNBUFͷࠂͷ༰ͱਓछͷಠཱੑΛݕఆ ਓछʹґଘͯ͠ࠂ༰͕ωΨςΟϒʹͳΔ͔ܾ·Δ TJHOJpDBODF Ͱ༏Ґʹैଐ
TJHOJpDBODF Ͱ༏Ґʹैଐ !7
.BDIJOF#JBT<"OHXJO > w $0.1"4ΞϧΰϦζϜ w नਓͷྦྷ൜ʹର͢ΔείΞΛ༩͑ͯ͘ΕΔ w είΞ͕ߴ͍΄Ͳྦྷ൜ϦεΫ͕ߴ͍ !8 ϦεΫ͍͕
ճͷྦྷ൜ ϦεΫߴ͍͕ ྦྷ൜͍ͯ͠ͳ͍
.BDIJOF#JBT<"OHXJO > !9 είΞͷਖ਼֬ੑͱਓछͷؔੑ w ޡͬͯࠇਓͷείΞΛߴ͘ਪఆ w ޡͬͯനਓͷείΞΛ͘ਪఆ നਓ͕༏۰͞ΕͨείΞ͕͞Ε͍ͯΔ ޡͬͯϦεΫ͕͍ͱਪఆ
ޡͬͯϦεΫ͕ߴ͍ͱਪఆ
ػց༁ʹ͓͚Δࠩผ w (PPHMF༁ w ਓশͷੑࠩͷͳ͍τϧίޠ͔Βӳޠͷ༁ w l൴൴ঁ<৬ۀ>Ͱ͋Δɽzͱ͍͏จΛ<৬ۀ>Λม͑ͯ༁ !10 (PPHMF༁IUUQTUSBOTMBUFHPPHMFDPN &㵽BSCBL`TGBDFCPPLQPTU
IUUQTXXXGBDFCPPLDPNQIPUPQIQ GCJETFUB UZQFUIFBUFS
ެฏੑͷࣾձతཁٻ w ػցֶशͷެฏੑࣾձ͔Βͷཁٻڧ͍ w #JH%BUBʹؔ͢Δ8IJUF)PVTF3FQPSU w 8IJUF)PVTF3FQPSU<1PEFTUB > lΞϧΰϦζϜʹΑΔજࡏతͳࠩผΛࢹ͠ͳ͚Ε ͳΒͳ͍z
w ಉ༷ͳ༰͕8IJUF)PVTF3FQPSU<.VOP[ > !11
ެฏੑͷ๏తཁٻ w 5JUMF7** w ਓछɼഽͷ৭ɼफڭɼੑผɼग़ࠃʹΑΔޏ༻ࠩผͷېࢭ w உঁޏ༻ػձۉ๏ w ৬ʹ͓͚Δஉঁࠩผͷېࢭ w
(%13 w "SUJDMFݸਓσʔλॲཧʹؔ͢Δنఆ w lద๏ɺެฏ͔ͭಁ໌ੑͷ͋ΔखஈͰॲཧ͠ͳ͚ΕͳΒͳ͍z !12 ޏ༻ʹػցֶशΛ͏߹ରॲ͕ඞཁෆՄܽ (%13ͲΜͳλεΫͰެฏੑ͕ཁٻ͞ΕΔՄೳੑ͕͋Δ
ෆެฏͷݪҼ ͳͥػցֶश͕ෆެฏͳग़ྗΛ͢Δͷ͔ w σʔλऩू͔Βֶशͷաఔʹ͓͍ͯόΠΞε͕Δ͜ͱ͕ݪҼ w ༷ʑͳόΠΞε͕ͷΔݪҼ͕ٞ͞Ε͍ͯΔ<#BSPDBT > w େ͖ͭ͘ʹΘ͚Δ
!13 ෆެฏ σʔλऩूʹ͓͚Δ όΠΞε w ࠩผతϥϕϧ͚ w αϯϓϦϯάόΠΞε ֶशʹ͓͚Δ όΠΞε w ֶशϞσϧͷઃܭ w গάϧʔϓͷແࢹ σʔλ ֶश
σʔλऩूʹ͓͚ΔόΠΞε w ֶशऀ͕ಘΒΕΔαϯϓϧ͕ෆެฏ !14 ࠩผతͳϥϕϧ wϥϕϧਓͷखʹΑ͚ͬͯΒΕΔ wྫ ޏ༻ͷ࠾൱աڈਓ͕அͨ͠ wϥϕϧ͚ʹࠩผతͳࢥ͍ࠐΈΛө͢ΔՄೳੑ͋Γ wҙࣝతແҙࣝతʹؔΘΒͣ
σʔλऩूʹ͓͚ΔόΠΞε w ֶशऀ͕ಘΒΕΔαϯϓϧ͕ෆެฏ !15 αϯϓϦϯάόΠΞε wภͬͨαϯϓϧ͔͠ಘΒΕͳ͍͕࣌͋Δ wྫ ͓ۚͷିΛͨ͠ਓ͕࠴ෆཤߦʹؕΔ͔Ͳ͏͔Θ͔Βͳ͍ wաڈ͓ۚΛିͨ͠ਓΛࠩผతʹબ͍ͯ͠ΔՄೳੑ͋Γ
"EVMUEBUB<$BMEFST > w 64ͷશ݅ௐࠪσʔλ w ݸਓͷऩೖ͕LҎ্͔ҎԼ͔༧ଌ͢Δ !16 .BMF 'FNBMF )JHIJODPNF
-PXJODPNF ͕ ߴऩೖ ͕ ߴऩೖ σʔλʹஉঁؒͷόΠΞε͕͋Δ
ֶशʹ͓͚ΔόΠΞε w ֶशʹΑͬͯෆެฏͳྨث͕ಘΒΕΔ !17 গάϧʔϓͷແࢹ wσʔλͷஉঁ͕ͻͲ͘ภ͍ͬͯΔͱ͢Δ wྫ ΄ͱΜͲͷσʔλ͕உੑͷͷͰঁੑͷσʔλ͕΄ͱΜͲͳ͍ w༧ଌੑೳΛ্͛ΔͨΊগΛϊΠζͱΈͳ͢Մೳੑ͕͋Δ
"EVMUEBUB<$BMEFST > w /BJWF#BZFTͰֶश͠ྨ͢Δ !18 .BMF 'FNBMF )JHIJODPNF
-PXJODPNF ͕ ߴऩೖ ͕ ߴऩೖ ΑΓࠩผతͳ༧ଌ݁ՌʹͳΔ
ֶशʹ͓͚ΔόΠΞε w ֶशʹΑͬͯෆެฏͳྨث͕ಘΒΕΔ !19 ֶशͷ༧ଌϞσϧͷઃܭʹΑΔࠩผ wػցֶशͰϞσϧઃܭΛͦ͠ͷޙϞσϧͷύϥϝʔλΛσʔλ͔ΒಘΔ wϞσϧઃܭͷํʹΑͬͯࠩผΛট͘ wྫ உঁͷΛͬͯ༧ଌΛߦ͏ϞσϧΛઃܭ wࠩผ
EJTQBSBUFUSFBUNFOU CMJOEOFTT Ϟσϧઃܭ ͳΜͷಛྔΛ͏͔ ༧ଌؔ ઢܗɼଟ߲ࣜɼ3),4ɼ%FFQ//
3FEMJOJOHF⒎FDU<$BMEFST > wஉঁͷΛΘͳͯࠩ͘ผ͕ى͜Δ w உঁਓछͳͲͱڧ͘ґଘͨ͠σʔλ Λ͏͜ͱͰؒతʹࠩผ͕ൃੜ w ྫ ֶྺΛͬͯ࠾൱ΛܾΊΔͱ ੑ͕ࠩੜ·ΕΔՄೳੑ͋Γ
w ྫ ॅॴΛͬͯ࠾൱ΛܾΊΔͱ ਓछͷ͕ࠩੜ·ΕΔՄೳੑ͋Γ !20 'SPNXJLJQFEJB
"EVMUEBUB<$BMEFST > w ੑผΛऔΓআ͍ͯ࠶/BJWF#BZFTͰֶश͠ྨ͢Δ !21 .BMF 'FNBMF )JHIJODPNF
-PXJODPNF ͕ ߴऩೖ ͕ ߴऩೖ ΑΓࠩผతͳ༧ଌ݁ՌʹͳΔ
ෆެฏͷݪҼ w ̎ͭͷঢ়گઃఆ σʔλ ֶशͰόΠΞε͕ͷΔՄೳੑ͕͋Δ ֶशͰόΠΞε͕ͷΔՄೳੑ͕͋Δ !22 ෆެฏ
σʔλऩूʹ͓͚Δ όΠΞε w ࠩผతϥϕϧ͚ w αϯϓϦϯάόΠΞε ֶशʹ͓͚Δ όΠΞε w ֶशϞσϧͷઃܭ w গάϧʔϓͷແࢹ σʔλ ֶश
ެฏੑఆٛ ूஂެฏੑ (SPVQGBJSOFTT w ηϯγςΟϒଐੑʹΑΔάϧʔϓؒͰ ͷࠩҟ !23 ݸਓެฏੑ *OEJWJEVBMGBJSOFTT
w ݸਓؒͰͷࠩҟ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ உੑ ঁੑ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ ≈ ≈ ⟹ =
ूஂݸਓ σʔλֶश !24 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
ूஂݸਓ σʔλֶश !25 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
ઃఆ w ؆୯ͷͨΊʹڭࢣ͋ΓྨͷΈΛߟ͑Δ w ɹɹɹɹɹɹɹɹɹɹֶྺɼ৬ྺɼࢿ֨ͳͲ w ɹɹɹɹɹɹɹɹɹɹੑผɼਓछɼफڭɼ࣏ࢤɼྸͳͲ w ɹɹɹɹɹɹɹɹɹɹ༧ଌ͍ͨ͠ͷ FH
࠾൱ w ɹɹɹɹɹɹɹɹɹɹΞϧΰϦζϜʹΑͬͯ༧ଌ͞Εͨϥϕϧ ೖྗ X ϥϕϧ Y ༧ଌϥϕϧ ̂ Y !26 ผͷೖྗ X S = உੑ S = ঁੑ ೖྗ X ϥϕϧ Y ηϯγςΟϒଐੑ S ༧ଌϥϕϧ ̂ Y ֶश
ूஂݸਓ σʔλֶश !27 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
%FNPHSBQIJDQBSJUZ w ηϯγςΟϒଐੑͰ͚݅ͮΒΕͨ༧ଌϥϕϧͷ͕Ұக w Ͱͳ͘༧ଌਫ਼ِཅੑِӄੑͷҰகΛࢦ͢ͷ͋Γ !28 %FNPHSBQIJDQBSJUZ ℙ{ ̂ Y
∈ 𝒜|S = s} = ℙ{ ̂ Y ∈ 𝒜|S = s′} ҙͷ𝒜, s, s′ʹ͍ͭͯ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ உੑ ঁੑ = ̂ Y|S = உੑ ̂ Y|S = ঁੑ
%FNPHSBQIJDQBSJUZ w σʔλʹόΠΞε͕ͷ͍ͬͯΔՄೳੑ͕͋ΔͨΊ ϥϕϧɹͱ༧ଌϥϕϧɹҟͳΔ͖ w ϥϕϧͱҧ͏༧ଌΛ༩͑Δͱ༧ଌੑೳ͕Լ͕Δ ༧ଌੑೳͱެฏੑͷτϨʔυΦϑͷޮԽ͕త !29 %FNPHSBQIJDQBSJUZ ℙ{
̂ Y ∈ 𝒜|S = s} = ℙ{ ̂ Y ∈ 𝒜|S = s′} ҙͷ𝒜, s, s′ʹ͍ͭͯ Y ̂ Y
ूஂݸਓ σʔλֶश !30 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
&RVBMJ[FEPEET<)BSEU > w ϥϕϧɹʹΑΔ༧ଌϥϕϧมԽࠩผΛੜ͡ͳ͍ ͱ৴͍ͯ͡Δ w ແཧΓ%1Λอো͠Α͏ͱ͢Δͱٯࠩผ !31 &RVBMJ[FEPEET
ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s} = ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s′} ҙͷ𝒜, y, s, s′ʹ͍ͭͯ Y உੑ உੑ ঁੑ ঁੑ σʔλ ༧ଌ ϥϕϧ %1ͷอূͷͨΊஉੑΛඇ࠾༻ʹ͢Δ ࠾༻͢ΔΑ͏ʹͨ͠ঁੑΑΓ ඇ࠾༻ʹͨ͠உੑͷํ͕ೳྗ͕ߴ͍
&RVBMJ[FEPEET<)BSEU > w ɹͱɹΛҰகͤ͞ΔΑ͏ʹֶशͰ͖Δ w %FNPHSBQIJDQBSJUZͰͰ͖ͳ͍ w ཧతʹτϨʔυΦϑͳ͍ গάϧʔϓແࢹͷࢭ͕తɹ !32
&RVBMJ[FEPEET ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s} = ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s′} ҙͷ𝒜, y, s, s′ʹ͍ͭͯ Y ̂ Y
%1WT&0 %1 w 1SPTόΠΞε͕ͷͬͨσʔλʹରԠ͍ͯ͠Δ w $POTٯࠩผͷ͋Γ &0 w 1SPT %1ʹൺͯ
༧ଌੑೳ͕Α͍ɼٯࠩผى͖ͳ͍ w $POTෆެฏͳόΠΞε͕ͬͨσʔλʹ͑ͳ͍ ͲͪΒಉ࣌ʹୡ͢Δ͜ͱෆՄೳ !33
ूஂެฏੑͷཧత՝ ൚Խతͳެฏੑͷอূ w ֶश࣌ʹςετ࣌ͷެฏੑͷอূ w طଘ݁Ռ w ૬ؔΛجʹͨ͠%1ͷެฏੑࢦඪͷҰ༷ऩଋ<'VLVDIJ > w
Ϋϥεͷେ͖͞ʹґଘ͠ͳ͍&0ͷެฏੑࢦඪͷऩଋ<8PPEXPSUI > w ޙॲཧܕͷΞϧΰϦζϜʹ͓͚Δ%1·ͨ&0ͷ൚Խެฏੑࢦඪόϯυ <"HBSXBM > w Ϋϥεͷେ͖͞ʹґଘ͠ͳ͍%1ͷެฏੑࢦඪͷऩଋ<$PUUFS > !34 ֶशσʔλͷ༧ଌ݁Ռ ςετσʔλͷ༧ଌ݁Ռ ެฏʹͳΔ Α͏ʹֶश ͢Δ ެฏ
ूஂެฏੑͷཧత՝ w ී௨ͷ൚Խόϯυ༧ଌϞσϧͷෳࡶ͞Λ༻͍Δ w ެฏੑͷ൚Խόϯυ༧ଌϞσϧͷෳࡶ͞ʹґଘ͠ͳ͘Ͱ͖Δ <8PPEXPSUI $PUUFS > w
ΘΓʹϥϕϧͷछྨºηϯγςΟϒଐੑͷͷछྨʹґଘ !35 ཧతʹ࠷దੑΛֶͬͨशํ๏ͷൃݟ w ूஂެฏੑʹ͓͚Δ࠷దੑͷղੳ·ͩͳ͍
ूஂެฏੑͷཧత՝ ֶशΞϧΰϦζϜͰ͋Δ࠷దԽͷ࠷దԽΞϧΰϦζϜ w ެฏੑͷ੍Λݴ͑ΕΔͱඇತͳ࠷దԽ͕ݱΕΔ w ۙࣅ ࠷దղΛಘΒΕΔ͜ͱΛอূ͢Δඞཁ͋Γ w طଘݚڀ w
ճؼ ࿈ଓηϯγςΟϒଐੑʹద༻Մೳͳඇತ࠷దԽʹΑͬͯఆࣜԽ͞ΕΔ ΞϧΰϦζϜͷ࠷దอূͷ͍ͭͨ࠷దԽΞϧΰϦζϜ<,PNJZBNB > w ͋ΔछͷΦϥΫϧͷଘࡏͷԾఆͷͱۙࣅ࠷దղΛଟ߲ࣜ࣌ؒͰٻΊΒΕΔ ࠷దԽΞϧΰϦζϜ<"MBCJ > !36
ूஂݸਓ σʔλֶश !37 όΠΞε JOσʔλ ֶश όΠΞεJOֶश ूஂެฏੑ
ݸਓެฏੑ
*OEJWJEVBMGBJSOFTT<%XPSL> w ੑผҎ֎શ͘ಉ͡ਓ͕͍Ε࠾൱ಉ͡ʹ͢Δ͖ w ࣅͨΑ͏ͳਓࣅͨ݁ՌΛड͚औΔ͖ w ֬త༧ଌؔ w !38 -JQTDIJU[QSPQFSUZ
ҙͷx, x′ʹ͍ͭͯ D( f(x), f(x′)) ≤ d(x, x′) ≈ ⟹ f : 𝒳 → Δ(𝒴) ݁Ռͷؒͷ ڑ
ݸਓެฏੑͷཧత՝ ൚Խతͳެฏੑͷอূ w ݸਓެฏੑʹؔͯ͠൚Խతͳੑೳͷղੳ͕ඞཁ w طଘ݁Ռ w σʔλ ֶशʹ͓͚ΔόΠΞεΛআڈ͍ͨ͠ઃఆͷͱ 1"$MFBSOJOHͷΈͰ1"ͳެฏੑͷ੍Լʹ͓͚Δαϯϓϧෳࡶͷղੳ
<3PUICMVN > !39 ࠷దੑΛֶͬͨशํ๏ͷൃݟେ͖ͳ՝
'BJSCBOEJU<+PTFQI > ࠷దੑͷূ໌͕Ͱ͖͍ͯΔ͋Δ w όϯσΟοτʹ͓͍ͯΞʔϜͷબʹެฏੑͷ੍ w σʔλʹόΠΞε͕ೖ͍ͬͯͳ͍ w ֶशʹ͓͚ΔόΠΞεͷআڈ͕త w
ఢରతόϯσΟοτͷઃఆͰ࠷దͳΞϧΰϦζϜΛఏҊ w จ຺͖όϯσΟοτʹ͓͚Δ݁Ռ͋Δ͕࠷దੑͳ͠ !40
࠷ۙͷల։ w طଘͷެฏੑͷఆٛʹٙ w ཧతʹެฏੑఆٛͷਖ਼ԽΛ͍ͨ͠ w طଘͷఆٛͷ w %FNPHSBQIJDQBSJUZٯࠩผ w
&RVBMJ[FEPEETσʔλʹؚ·ΕΔόΠΞεΛऔΓআ͚ͳ͍ w *OEJWJEVBMGBJSOFTTڑവͷఆٛ !41
%FMBZFE&⒎FDU<-JV > w ֶशͱςετͷؒʹ࣌ؒతִͨΓ͕͋Δ w ͦͷؒʹαϯϓϧͷ͕มԽ͢Δ w %FNPHSBQIJDQBSJUZͷਖ਼ੑ ೖࢼ
w ශࠔͷֶੜΛऔΒͳ͍͜ͱͰকདྷශࠔ͕֦େ͢Δ͜ͱͷࢭ w %1 &0ͷ੍Λ͚ͭͨ࣌༧ଌ࣌ͷੑೳͲ͏ͳΔ͔ !42 ࣌ࠁ σʔλऩू ֶश ༧ଌ αϯϓϧͷ͕มԽ
·ͱΊ w ެฏੑʹ͓͚Δཧత՝ w ൚ԽੑೳͷղੳΒΕ࢝Ί͍ͯΔ w ࠷దੑͷূ໌͕େ͖ͳ՝ͱ͍ͯͬͯ͠Δ w ཧతͳެฏੑఆٛͷਖ਼ԽҰ൪େ͖ͳ՝ !43