Upgrade to Pro — share decks privately, control downloads, hide ads and more …

公平性を保証したAI/機械学習アルゴリズムの最新理論

 公平性を保証したAI/機械学習アルゴリズムの最新理論

産総研 人工知能研究センター【第38回AIセミナー】で発表した講演「機械学習/人工知能の公平性」のスライドです.

Kazuto Fukuchi

November 26, 2019
Tweet

More Decks by Kazuto Fukuchi

Other Decks in Research

Transcript

  1. ࣗݾ঺հ w ໊લ෱஍Ұే 'VLVDIJ,B[VUP  w ॴଐஜ೾େֶγεςϜ৘ใܥॿڭ w ܦྺ w

    ஜ೾େֶγεςϜ৘ใ޻ֶઐ߈Պത࢜ޙظ՝ఔमྃ w ཧݚ"*1ಛผݚڀһ w ݱࡏஜ೾େֶγεςϜ৘ใܥॿڭ w ݱࡏཧݚ"*1٬һݚڀһ w ݚڀڵຯ w ػցֶशʹ͓͚ΔެฏੑɼϓϥΠόγʔͷཧ࿦໘ w ਺ཧ౷ܭɼಛʹɼ൚ؔ਺ਪఆ
  2. ػցֶशք۾Ͱͷެฏੑͷ஫໨ ACM FAT* ࠃࡍձٞ "$.'"5  """*"$."*&4 ࠃࡍϫʔΫγϣοϓ '"5.- ট଴ߨԋ

    w*$.- -4XFFOFZ  w/*14 ,$SBXGPSE  w,%% $%XPSL  w,%% +.8JOH "*GPS4PDJBM(PPE $IBMMFOHFTBOE0QQPSUVOJUJFTGPS"* JO'JOBODJBM4FSWJDFT "*&UIJDT84
  3. ઃఆ w ؆୯ͷͨΊʹڭࢣ͋Γ෼ྨ໰୊ͷΈΛߟ͑Δ w ɹɹɹɹɹɹɹɹɹɹֶྺɼ৬ྺɼࢿ֨ͳͲ w ɹɹɹɹɹɹɹɹɹɹੑผɼਓछɼफڭɼ੓࣏ࢤ޲ɼ೥ྸͳͲ w ɹɹɹɹɹɹɹɹɹɹ༧ଌ͍ͨ͠΋ͷ FH

    ࠾൱  w ɹɹɹɹɹɹɹɹɹɹΞϧΰϦζϜʹΑͬͯ༧ଌ͞Εͨϥϕϧ ೖྗ X ϥϕϧ Y ༧ଌϥϕϧ ̂ Y ผͷೖྗ X S = உੑ S = ঁੑ ೖྗ X ϥϕϧ Y ηϯγςΟϒଐੑ S ༧ଌϥϕϧ ̂ Y ֶश
  4. %FNPHSBQIJDQBSJUZ w ηϯγςΟϒଐੑͰ৚͚݅ͮΒΕͨ༧ଌϥϕϧͷ෼෍͕Ұக w ෼෍Ͱ͸ͳ͘༧ଌਫ਼౓ِཅੑِӄੑͷҰகΛ໨ࢦ͢΋ͷ ΋͋Γ %FNPHSBQIJDQBSJUZ ℙ{ ̂ Y

    ∈ 𝒜|S = s} = ℙ{ ̂ Y ∈ 𝒜|S = s′ } ೚ҙͷ𝒜, s, s′ ʹ͍ͭͯ ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ உੑ ঁੑ = ̂ Y|S = உੑ ̂ Y|S = ঁੑ
  5. &RVBMJ[FEPEET<)BSEU > w ɹͱɹΛҰகͤ͞ΔΑ͏ʹֶशͰ͖Δ w %FNPHSBQIJDQBSJUZͰ͸Ͱ͖ͳ͍ &RVBMJ[FEPEET ℙ{ ̂ Y

    ∈ 𝒜|Y = y, S = s} = ℙ{ ̂ Y ∈ 𝒜|Y = y, S = s′ } ೚ҙͷ𝒜, y, s, s′ ʹ͍ͭͯ Y ̂ Y ࠾༻ ඇ࠾༻ உੑ ࠾༻ ඇ࠾༻ ঁੑ ਅͷ࠾༻෼෍ ֶश ࠾༻ ඇ࠾༻ ࠾༻ ඇ࠾༻ ެฏ ֶशͷ݁ՌมԽͨ͠෦෼ ྘ͷ෦෼ ͷҰக
  6. $BMJCSBUJPO<1MFJTT > w Ͱ͋Δ֬཰ͷ༧ଌ஋Λ ͱ͢Δ w Ͱ͋Δ༧ଌ͕ ͷΈʹΑܾͬͯ·ΔΑ͏ʹ੍໿ Y =

    1 ̂ p Y = 1 ̂ p $BMJCSBUJPO ℙ{Y = 1| ̂ p = p, S = s} = p ೚ҙͷp, sʹ͍ͭͯ உੑ ࠾༻ ඇ࠾༻ p ̂ p = p|S = உੑ
  7. 3FEVDUJPO"QQSPBDI<"HBSXBM > w ֬཰తͳ෼ྨث Λֶश w ͸෼ྨث ্ͷ෼෍ w 3FEVDUJPO

    w ֶश໰୊ΛίετηϯγςΟϒֶशͷܥྻʹஔ͖׵͑ Q Q f  minQ 𝔼f∼Q ℙ{f(X) ≠ Y} TVCUP M𝔼f∼Q [μ(f )] ≤ c ࠷దԽ໰୊ ެฏੑج४Λ༗ݶݸͷ੍໿Ͱදݱ ྫ%1  𝔼{f(X)|S = 0} = 𝔼{f(X)} 𝔼{f(X)|S = 1} = 𝔼{f(X)}
  8. 3FEVDUJPO"QQSPBDI<"HBSXBM >  minQ 𝔼f∼Q ℙ{f(X) ≠ Y} TVCUP M𝔼f∼Q

    [μ(f )] ≤ c ݩͷ࠷దԽ໰୊  maxλ∈ℝK + ,∥λ∥≤B minQ 𝔼f∼Q ℙ{f(X) ≠ Y} + λ⊤ (M𝔼f∼Q [μ(f )] − c) ੍໿ແ͠࠷దԽ໰୊ ϥάϥϯδϡ৐਺ ަޓ࠷దԽʹΑͬͯҌ఺Λ୳ࡧ
  9. ίετηϯγςΟϒֶश w ༧ଌͷॏΈ͕ҧ͏ w ϥϕϧ͕ϙδςΟϒωΨςΟϒ͔ w αϯϓϧຖ w ྫʣ࣬ױਪఆ w

    ࣬ױ͕ͳ͍ͷʹؒҧ͏ΑΓ΋࣬ױ͕͋Δͷʹؒҧ͏͜ͱͷ ํ͕໰୊  minf ∑n i=1 (h(Xi )C1 i + (1 − h(Xi ))C0 i ) ίετηϯγςΟϒֶश
  10. 7"&ͱ*OGPSNBUJPOCPUUMFOFDLΛ ݩʹͨ͠ํ๏<.PZFS > w ఢରతֶशͷ໰୊ɿֶश͕஗͍ w 7BSJBUJPOBM"VUP&ODPEFS 7"& Λݩʹޮ཰తͳֶश minf

    Likelihood(f(X), Y) + ηI(f(X), S) ࠷దԽ໰୊ 7"&ͷςΫχοΫΛ࢖্ͬͯهͷ໰୊Λۙࣅ͠ͳ͕Βղ͘
  11. ൚Խޡࠩެฏੑ ֶशΞϧΰϦζϜ ෼ྨث f( )=Aࢯ ϥϕϧ෇͖σʔλ ܇࿅σʔλ ςετσʔλ ςετσʔλͰͷޡࠩ 

    ܇࿅σʔλͰͷޡࠩ ςετσʔλͰͷෆެฏੑ  ܇࿅σʔλͰͷෆެฏੑ ൚Խޡࠩ ൚Խެฏੑ
  12. -FBSOJOH/PO%JTDSJNJOBUPSZ1SFEJDUPST <8PPEXPSUI > w &RVBMJ[FEPEETΛอূ͢ΔͨΊͷΞϧΰϦζϜ <)BSEU *$.-`> w είΞϕʔεͷ෼ྨثΛֶश w

    είΞҎ্  w 30$͕Ұக͢ΔΑ͏ʹείΞͷᮢ஋Λௐઅ w ͜ͷΞϧΰϦζϜ͸TVCPQUJNBM w QPTUIPDͰ͸Τϥʔ͕ͩ &RVBMJ[FEPEET੍໿Λຬͨ͢Τϥʔ͕খ͍͞ ෼ྨث͕ଘࡏ͢Δ໰୊͕࡞ΕΔ ̂ Y = 1
  13. -FBSOJOH/PO%JTDSJNJOBUPSZ1SFEJDUPST "MHPSJUIN "OBMZTJT w ΞϧΰϦζϜ֓ཁɿ w σʔληοτΛ൒෼ʹ෼͚Δ w ยํΛ࢖͍&RVBMJ[FEPEET੍໿ΛՊֶͨ͠शΛߦ͏ w

    ΋͏ยํΛ࢖͍QPTUIPDͰ੍໿Λຬͨ͢Α͏ʹ͢Δ maxy,s (VC(ℱ) + ln(1/δ))/(nPy,s ) ൚Խޡࠩ maxy,s ln(1/δ)/(nPy,s ) ެฏੑޡࠩ
  14. -FBSOJOH/PO%JTDSJNJOBUPSZ1SFEJDUPST "MHPSJUIN "OBMZTJT w ΞϧΰϦζϜ֓ཁɿ w σʔληοτΛ൒෼ʹ෼͚Δ w ยํΛ࢖͍&RVBMJ[FEPEET੍໿ΛՊֶͨ͠शΛߦ͏ w

    ΋͏ยํΛ࢖͍QPTUIPDͰ੍໿Λຬͨ͢Α͏ʹ͢Δ maxy,s (VC(ℱ) + ln(1/δ))/(nPy,s ) ൚Խޡࠩ maxy,s ln(1/δ)/(nPy,s ) ެฏੑޡࠩ Ұ൪σʔλ͕গͳ͍ ͷαϯϓϧ਺ (y, s) ൚Խޡࠩ͸7$࣍ݩʹ ґଘ ެฏੑ͸7$࣍ݩʹ ඇґଘ
  15. 5SBJOJOH8FMM(FOFSBMJ[JOH$MBTTJpFSTGPS 'BJSOFTT.FUSJDTBOE0UIFS%BUB %FQFOEFOU$POTUSBJOUT<$PUUFS > w <8PPEXPSUI >ͷ͞ΒͳΔҰൠԽ w ໨తؔ਺͕෼ྨޡࠩ w

    ੍໿͕ެฏੑ w 3FEVDUJPOͱࣅͨઓུͰΞϧΰϦζϜΛߏங w ͨͩ͠<8PPEXPSUI >ͱಉ༷ͷઓུ΋࢖͏ w σʔληοτΛͭʹ෼͚ͯ໨తؔ਺ͱ੍໿ΛผʑʹධՁ minθ 𝔼[ℓ0 (X, θ)]TVCUP𝔼[ℓi (X, θ)] ≤ 0 ର৅ͱ͢Δ໰୊
  16. 5SBJOJOH8FMM(FOFSBMJ[JOH$MBTTJpFSTGPS 'BJSOFTT.FUSJDTBOE0UIFS%BUB %FQFOEFOU$POTUSBJOUT"OBMZTJT ϵ + Rn (ℱ) + ln(1/δ)/n ໨తؔ਺ͷ൚Խޡࠩ

    (m ln(1/ϵ) + ln(m/δ))/n ੍໿ͷ൚Խޡࠩ ൚Խޡࠩ͸ෳࡶ͞ʹ ґଘ ެฏੑ͸੍໿਺ͷΈʹ ґଘ w ࠷దԽख๏Ͱੜ͡Δޡࠩ w ੍໿਺ w ෼ྨثͷෳࡶ͞ ϵ m Rn (ℱ)
  17. 1SPCBCMZ"QQSPYJNBUFMZ.FUSJD'BJS -FBSOJOH<3PUICMVN > w Ͱ͋Δ֬཰Λฦ͢෼ྨث Λֶश w ΰʔϧ w ্هͷ੍໿ͷ΋ͱਅͷϥϕϧͱ

    ͷ ଛࣦΛ࠷খԽ ̂ Y = 1 h : 𝒳 → [0,1] h ℓ0 ℙx,x′ {|h(x) − h(x′ )| > d(x, x′ ) + γ} ≤ α ݸਓެฏੑ੍໿ (γ, α)
  18. 1SPCBCMZ"QQSPYJNBUFMZ.FUSJD'BJS -FBSOJOH"MHPSJUIN "OBMZTJT maxi,j max(0,|h(x) − h(x′ )| − d(xi

    , xj )) ≤ γ ֶश࣌ͷ੍໿ ެฏੑҧ൓ʹേଇ ͳΒ͹ΞϧΰϦζϜ͸ޡࠩ ͷ ެฏͳ෼ྨث Λग़ྗ͢Δɽ m = O(poly(1/ϵα ,1/ϵγ ,1/ϵ)) ϵ (α + ϵα , γ + ϵγ ) h αϯϓϧෳࡶ౓ ۙࣅతͳެฏੑ͕-FBSOBCMFͰ ͋Δ͜ͱΛূ໌ ҉߸తͳPOFXBZؔ਺ͷଘࡏԼͰ͸׬શͳެฏੑ͸ࢦ਺తܭࢉ͕࣌ؒඞཁ
  19. όϯσΟοτ໰୊ w ஞ࣍ҙࢥܾఆ໰୊ w ໨త w ྦྷੵใु ͷ࠷େԽ w ͕༩͑ΒΕͨ࣌

    Λ બ୒ w ∑T t=1 r(t) x(t) 1 , . . . , x(t) K i r(t) = fi (x(t) i ) όϯσΟοτ໰୊ ΦϯϥΠϯਪનͳͲͷԠ༻ ݸਓԽ޿ࠂਪન 8FCهࣄਪન 4/4༑ਓਪન Ϣʔβ৘ใ x(t) ޿ࠂ i(t) ϑΟʔυόοΫr(t)
  20. 'BJSCBOEJU3FHSFU w ௨ৗจ຺෇͖όϯσΟοτͰͷϨάϨοτղੳ w ཧ૝తͳใु͔ΒͲΕ͚ͩใुΛऔΓಀ͕͔ͨ͠  K3T ln(Tk/δ) ௨ৗόϯσΟοτͷϨάϨοτ T4/5K6/5d3/5

    ∨ k3 ln(k/δ) ઢܗจ຺෇͖όϯσΟοτͷϨάϨοτ ͕஌ΒΕ͓ͯΓ ΋ূ໌ Ω( T) Ω( K3 ln(1/δ)) ΄΅λΠτͳ ό΢ϯυ ௨ৗ͸ TKd ln(T)
  21. $BMJCSBUFE'BJSOFTTJO#BOEJUT<-JV > w ݸਓެฏੑ੍໿Λຬͨ͠$BMJCSBUJPOҧ൓Λ࠷খʹ͢Δ πi (t) ≠ ℙ{i = arg

    maxj rj } $BMJCSBUJPOҧ൓ D(π(t) i , π(t) j ) ≤ ϵ1 D(ri , rj ) + ϵ2 ݸਓެฏੑ੍໿
  22. 0OMJOF-FBSOJOHXJUIBO6OLOPXO 'BJSOFTT.FUSJD<(JMMFO > w ઢܗจ຺෇͖όϯσΟοτ໰୊ ݸਓެฏੑ੍໿ w ڑ཭വ਺Λ஌Βͳ͍ w ୅ΘΓʹϑΟʔυόοΫʹڑ཭৘ใؚ͕·ΕΔ

    |πi (t) − πj (t)| ≤ d(x(t) i , x(t) j ) ݸਓެฏੑ੍໿ Ϣʔβ৘ใx(t) i ޿ࠂ෼෍π(t) ϑΟʔυόοΫr(t) ڑ཭ΦϥΫϧO(t) ੍໿ҧ൓͍ͯ͠Δ ϖΞΛฦ͢ ࣮ࡍʹ͸ ͙Β͍ͷ ҧ൓Λڐ͢ ϵ
  23. 0OMJOF-FBSOJOHXJUIBO6OLOPXO 'BJSOFTT.FUSJD3FHSFU 'BJSOFTT w 'BJSOFTT͸ެฏੑ੍໿Λҧ൓ͨ͠ճ਺ w ·ͱΊΔͱ ͕ ʹൺ΂͋Δఔ౓খ͍͞ͳΒ w

    3FHSFU  w 'BJSOFTT K, d T d T ln(T/δ) K2d2 ln(TKd) K2d2 ln(kdT/ϵ) + K3ϵT + d T ln(T/δ) 3FHSFU K2d2 ln(d/ϵ) 'BJSOFTT Ͱ ʹؔ ͯ͠͸΄΅࠷ద ϵ = 1/K3T T
  24. ڧԽֶश w ڧԽֶश w ໨త w ׂҾใु ͷ࠷େԽ ∑∞ t=τ

    γt−τr(t) ঢ়ଶs(t) ߦಈa(t) ϑΟʔυόοΫr(t) ߦಈʹΑͬͯঢ়ଶભҠ ঢ়ଶʹΑͬͯใु෼෍͕มΘΔ
  25. 'BJSOFTTJO3FJOGPSDFNFOU-FBSOJOH <+BCCBSJ > w ڧԽֶशʹ͓͍ͯ<+PTFQI >ͱಉ༷ͳެฏੑ੍໿ w ݁Ռ w &YBDUͳެฏੑΛୡ੒͢Δʹ͸ࢦ਺తࢼߦ͕ඞཁ

    w ࠷దͳϙϦγʔ͕ಘΒΕΔ·Ͱʹे෼ͳεςοϓ਺͸ w ׂҾ཰ ʹ͍ͭͯ͸ࢦ਺తͰ͜Ε͕࠷ద w ଞͷ߲ʹؔͯ͠͸ଟ߲ࣜ ϵ 1/(1 − γ) πi (t) > πj (t)POMZJGfi (s(t) i ) > fj (s(t) j ) ೳྗओٛతެฏੑ
  26. %FMBZFE&⒎FDU<-JV > w ֶशͱςετͷؒʹ࣌ؒతִͨΓ͕͋Δ w ͦͷؒʹαϯϓϧͷ෼෍͕มԽ͢Δ w %FNPHSBQIJDQBSJUZͷਖ਼౰ੑ ೖࢼ 

    w ශࠔ૚ͷֶੜΛऔΒͳ͍͜ͱͰকདྷශࠔ͕֦େ͢Δ͜ͱͷ๷ࢭ w %1 &0ͷ੍໿Λ͚ͭͨ࣌༧ଌ࣌ͷੑೳ͸Ͳ͏ͳΔ͔ ࣌ࠁ σʔλऩू ֶश ༧ଌ αϯϓϧͷ෼෍͕มԽ
  27. ·ͱΊ w ެฏੑͷ࠷৽ݚڀΛ঺հ w ࠓ೔ͷ಺༰ w ෼ྨɼճؼʹ͓͚Δެฏੑͷอূํ๏ w 3FEVDUJPOBQQSPBDI w

    දݱֶशʹ͓͚Δެฏੑͷอূํ๏ w 'BJSͳදݱɼ*OWBSJBOU'FBUVSF w ެฏੑԼʹ͓͚Δֶशཧ࿦ w όϯσΟοτ໰୊ʹ͓͚Δެฏੑ w ͦͷଞ࿩୊ͷτϐοΫ
  28. 3FGFSFODFT • [Hardt+16] Moritz Hardt, Eric Price, and Nathan Srebro.

    Equality of Opportunity in Supervised Learning. In: NeurIPS, pp. 3315-3323, 2016. https://arxiv.org/abs/1610.02413 • [Pleiss+17] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q. Weinberger. On Fairness and Calibration. In: NeurIPS, pp. 5680-5689, 2017. https://arxiv.org/ abs/1709.02012 • [Dwork+12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, Rich Zemel. Fairness Through Awareness. In: the 3rd innovations in theoretical computer science conference, pp. 214-226, 2012. https://arxiv.org/abs/ 1104.3913
  29. 3FGFSFODFT • [Agarwal+18] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John

    Langford, and Hanna Wallach. A Reductions Approach to Fair Classification. In: ICML, PMLR 80, pp. 60-69, 2018. https://arxiv.org/abs/1803.02453 • [Agarwal+19] Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair Regression: Quantitative Definitions and Reduction-based Algorithms. In: ICML, PMLR 97, pp. 120-129, 2019. https://arxiv.org/abs/1905.12843 • [Zafar+13] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning Fair Representations. In: ICML, PMLR 28, pp. 325-333, 2013.
  30. 3FGFSFODFT • [Zhao+19] Han Zhao, Geoffrey J. Gordon. Inherent Tradeoffs

    in Learning Fair Representations. In: NeurIPS, 2019, to appear. https://arxiv.org/abs/1906.08386 • [Xie+16] Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig. Controllable Invariance through Adversarial Feature Learning. In: NeurIPS, pp. 585-596, 2016. https://arxiv.org/abs/1705.11122 • [Moyer+18] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, and Aram Galstyan. Invariant Representations without Adversarial Training. In: NeurIPS, pp. 9084-9893, 2018. https://arxiv.org/abs/1805.09458
  31. 3FGFSFODFT • [Woodworth+18] Blake Woodworth, Suriya Gunasekar, Mesrob I. Ohannessian,

    Nathan Srebro. Learning Non-Discriminatory Predictors. In: COLT, pp. 1920-1953, 2017. https://arxiv.org/abs/ 1702.06081 • [Cotter+19] Andrew Cotter, Maya Gupta, Heinrich Jiang, Nathan Srebro, Karthik Sridharan, Serena Wang, Blake Woodworth, Seungil You. Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints. In: ICML, PMLR 97, pp. 1397-1405, 2019. https:// arxiv.org/abs/1807.00028 • [Rothblum+18] Guy N. Rothblum, Gal Yona. Probably Approximately Metric-Fair Learning. In: ICML, PMLR 80, pp. 5680-5688, 2018. https://arxiv.org/abs/1803.03242
  32. 3FGFSFODFT • [Joseph+16] Matthew Joseph, Michael Kearns, Jamie Morgenstern, Aaron

    Roth. Fairness in Learning: Classic and Contextual Bandits. In: NeurIPS, pp. 325-333, 2016. • [Liu+17] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal, David C. Parkes. Calibrated Fairness in Bandits. In: 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning (FATML), 2017. https://arxiv.org/abs/1707.01875 • [Gillen+18] Stephen Gillen, Christopher Jung, Michael Kearns, Aaron Roth. Online Learning with an Unknown Fairness Metric. In: NeurIPS, pp. 2600-2609, 2018. https:// arxiv.org/abs/1802.06936
  33. 3FGFSFODFT • [Jabbari+17] Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie

    Morgenstern, Aaron Roth. Fairness in Reinforcement Learning. In: ICML, PMLR 70, pp. 1617-1626, 2017. https://arxiv.org/abs/1611.03071 • [Liu+18] Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt. Delayed Impact of Fair Machine Learning. In: ICML, PMLR 80, pp. 3150-3158, 2018. https://arxiv.org/abs/ 1803.04383 • [Aivodji+19] Ulrich Aïvodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, Alain Tapp. Fairwashing: the risk of rationalization. In: ICML, 2019. https://arxiv.org/abs/1901.09749 • [Fukuchi+20] Kazuto Fukuchi, Satoshi Hara, Takanori Maehara. Faking Fairness via Stealthily Biased Sampling. In: AAAI, Special Track on AI for Social Impact (AISI), 2020, to appear. https://arxiv.org/abs/ 1901.08291
  34. "WFSBHF*OEJWJEVBM'BJSOFTT"MHPSJUINT  (FOFSBMJ[BUJPOBOE&YQFSJNFOUT <,FBSOT /FVS*14`> w IUUQTBSYJWPSHBCT w ಉҰݸਓʹෳ਺ͷ஋ϥϕϧ͕σʔλͱͯ͠༩͑ΒΕΔ w

    ϥϕϧ͸JJEʹෳ਺ͷؔ਺͕ੜ੒͞ΕɼผʹJJEʹੜ੒͞Ε ͨݸਓʹؔ਺ΛదԠ͢ΔܗͰ͑Β͑Δ w ΰʔϧ͸ޡࠩ࠷খͱͳΔؔ਺ͷ෼෍ΛಘΔ͜ͱ w ͜ͷઃఆ্Ͱؔ਺ͷ෼෍ʹରͯ͠ฏۉతͳݸਓެฏੑΛ༩ ͑ͯ w ͦͷֶशΞϧΰϦζϜͱαϯϓϧෳࡶ౓ΛٻΊ͍ͯΔ
  35. &YQMPSJOH"MHPSJUINJD'BJSOFTTJO3PCVTU (SBQI$PWFSJOH1SPCMFNT <3BINBUUBMBCJ /FVS*14`> w IUUQTQBQFSTOJQTDDQBQFSFYQMPSJOH BMHPSJUINJDGBJSOFTTJOSPCVTUHSBQIDPWFSJOH QSPCMFNT w 3PCVTUHSBQIDPWFS໰୊ʹ͓͚Δެฏੑ

    w ϊʔυ͕άϧʔϓͰ෼͔Ε͍ͯΔ w গͳ͘ͱ΋8ݸͷಉҰάϧʔϓͷϊʔυΛબ୒͢Δඞཁ͕ ͋Δ w ެฏੑ੍໿ʹΑΔDPWFSͷѱ͞ͷղੳ΍/1)BSEͳͷͰۙ ࣅΞϧΰϦζϜΛ։ൃ