Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What understood about that we've used LUIS thro...
Search
NAVITIME JAPAN
PRO
January 16, 2018
Technology
0
21
What understood about that we've used LUIS through the year
What understood that we've used LUIS through the year.
NAVITIME JAPAN
PRO
January 16, 2018
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
15k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
800
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
240
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
3.1k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.6k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
370
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.6k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.3k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
7
5.7k
Other Decks in Technology
See All in Technology
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
310
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
230
Okta Identity Governanceで実現する最小権限の原則 / Implementing the Principle of Least Privilege with Okta Identity Governance
tatsumin39
0
180
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
5
1.5k
クラウドとリアルの融合により、製造業はどう変わるのか?〜クラスメソッドの製造業への取組と共に〜
hamadakoji
0
450
CLIPでマルチモーダル画像検索 →とても良い
wm3
0
300
Azure Well-Architected Framework入門
tomokusaba
1
140
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
6
1.2k
MCP ✖️ Apps SDKを触ってみた
hisuzuya
0
390
AI時代、“平均値”ではいられない
uhyo
8
2.6k
生成AI時代のPythonセキュリティとガバナンス
abenben
0
140
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
380
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
650
Writing Fast Ruby
sferik
630
62k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Code Reviewing Like a Champion
maltzj
526
40k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
A designer walks into a library…
pauljervisheath
209
24k
Unsuck your backbone
ammeep
671
58k
Mobile First: as difficult as doing things right
swwweet
225
10k
Transcript
What understood about that we’ve used LUIS through the year
Shinichi Tanabe January 12, 2018 Minami Aoyama Night #5
Speaker Shinichi Tanabe (田邊 晋一/たなべ しんいち) • NAVITIME JAPAN
Co., Ltd. ◦ Joined in 2008 ◦ Cogbot project ◦ Programmer
Products
None
Encounter
September 15, 2016
None
None
First impression
Easy to use, runs fast and smart.
Easy to use
Let’s go to the portal site! https://www.luis.ai
Step1. Create new app
None
Step2. Add intent
None
Step3. Add utterances
None
Step4. Add entities
None
None
Step5. Train
None
Step6. Test
None
None
None
None
None
Step7. Publish
None
None
That’s all!
Furthermore...
You can get a happy bonus.
Versioning
None
None
None
None
Runs fast and smart
Comparison between and LUIS Dialogflow
Test model
Test model Intent Places.FindPlace Utterances おいしいカレーが食べたいな どこか近くでおすすめのレストランを教えて Entities Cuisine カレー
PlaceType レストラン
Training speed
LUIS 2 - 4 sec Dialogflow 4 - 8 sec
The training speed result of test model
Precision and recall
Test utterance LUIS Dialogflow Intent Entity Intent Entity おいしいカレーが食べたいな 〇
〇 〇 〇 どこか近くでおすすめのレストラ ンを教えて 〇 〇 〇 〇 Precision result of test model
Test utterance LUIS Dialogflow Intent Entity Intent Entity おすすめのバーを教えて 〇
〇 × × おすすめのバー教えて 〇 × × × おいしいうどんが食べたい 〇 〇 〇 × おいしいうどん食べたい 〇 × 〇 × Recall result of test model
Yes, he was perfect!
Getting started
But, we had some questions.
Questions 1. How should we defines intents and entities? 2.
How do we know accuracy and precision? 3. When will he go GA(General Availability)?
1. How should we defines intents and entities?
Anti pattern Utterance : Intent ≒ 1 : 1
Use or copy pre-build model positively.
None
None
2. How do we know accuracy and precision?
Comprehensive test on model
Batch testing
Test result details in a visualized view.
Error matrix
True positive True negative Green zone indicates correct prediction
False negative False positive Red zone indicates incorrect prediction
3. When will he go GA?
LUIS is now GA!!
How to get along with LUIS
Points 1. Start small model which has few intents. 2.
Use or copy pre-build model positively. 3. Raise requests before do something about that yourself.
Thank you!