Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What understood about that we've used LUIS thro...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
NAVITIME JAPAN
PRO
January 16, 2018
Technology
0
24
What understood about that we've used LUIS through the year
What understood that we've used LUIS through the year.
NAVITIME JAPAN
PRO
January 16, 2018
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
16k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
930
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
260
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
3.2k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.8k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
400
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.8k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.5k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
8
5.9k
Other Decks in Technology
See All in Technology
22nd ACRi Webinar - 1Finity Tamura-san's slide
nao_sumikawa
0
110
22nd ACRi Webinar - ChipTip Technology Eric-san's slide
nao_sumikawa
0
100
AI駆動開発を事業のコアに置く
tasukuonizawa
1
400
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
配列に見る bash と zsh の違い
kazzpapa3
3
170
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
550
マネージャー視点で考えるプロダクトエンジニアの評価 / Evaluating Product Engineers from a Manager's Perspective
hiro_torii
0
190
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
130
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
200
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
150
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
174
15k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
Context Engineering - Making Every Token Count
addyosmani
9
670
Docker and Python
trallard
47
3.7k
Site-Speed That Sticks
csswizardry
13
1.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
66
Side Projects
sachag
455
43k
Odyssey Design
rkendrick25
PRO
1
500
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
160
Transcript
What understood about that we’ve used LUIS through the year
Shinichi Tanabe January 12, 2018 Minami Aoyama Night #5
Speaker Shinichi Tanabe (田邊 晋一/たなべ しんいち) • NAVITIME JAPAN
Co., Ltd. ◦ Joined in 2008 ◦ Cogbot project ◦ Programmer
Products
None
Encounter
September 15, 2016
None
None
First impression
Easy to use, runs fast and smart.
Easy to use
Let’s go to the portal site! https://www.luis.ai
Step1. Create new app
None
Step2. Add intent
None
Step3. Add utterances
None
Step4. Add entities
None
None
Step5. Train
None
Step6. Test
None
None
None
None
None
Step7. Publish
None
None
That’s all!
Furthermore...
You can get a happy bonus.
Versioning
None
None
None
None
Runs fast and smart
Comparison between and LUIS Dialogflow
Test model
Test model Intent Places.FindPlace Utterances おいしいカレーが食べたいな どこか近くでおすすめのレストランを教えて Entities Cuisine カレー
PlaceType レストラン
Training speed
LUIS 2 - 4 sec Dialogflow 4 - 8 sec
The training speed result of test model
Precision and recall
Test utterance LUIS Dialogflow Intent Entity Intent Entity おいしいカレーが食べたいな 〇
〇 〇 〇 どこか近くでおすすめのレストラ ンを教えて 〇 〇 〇 〇 Precision result of test model
Test utterance LUIS Dialogflow Intent Entity Intent Entity おすすめのバーを教えて 〇
〇 × × おすすめのバー教えて 〇 × × × おいしいうどんが食べたい 〇 〇 〇 × おいしいうどん食べたい 〇 × 〇 × Recall result of test model
Yes, he was perfect!
Getting started
But, we had some questions.
Questions 1. How should we defines intents and entities? 2.
How do we know accuracy and precision? 3. When will he go GA(General Availability)?
1. How should we defines intents and entities?
Anti pattern Utterance : Intent ≒ 1 : 1
Use or copy pre-build model positively.
None
None
2. How do we know accuracy and precision?
Comprehensive test on model
Batch testing
Test result details in a visualized view.
Error matrix
True positive True negative Green zone indicates correct prediction
False negative False positive Red zone indicates incorrect prediction
3. When will he go GA?
LUIS is now GA!!
How to get along with LUIS
Points 1. Start small model which has few intents. 2.
Use or copy pre-build model positively. 3. Raise requests before do something about that yourself.
Thank you!