Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What understood about that we've used LUIS thro...
Search
NAVITIME JAPAN
PRO
January 16, 2018
Technology
0
21
What understood about that we've used LUIS through the year
What understood that we've used LUIS through the year.
NAVITIME JAPAN
PRO
January 16, 2018
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
22
15k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
440
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
170
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
2.6k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.4k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
270
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.4k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.3k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
7
5.4k
Other Decks in Technology
See All in Technology
LINEギフトにおけるバックエンド開発
lycorptech_jp
PRO
0
390
Snowflake ML モデルを dbt データパイプラインに組み込む
estie
0
110
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
14
5.3k
手を動かしてレベルアップしよう!
maruto
0
240
"TEAM"を導入したら最高のエンジニア"Team"を実現できた / Deploying "TEAM" and Building the Best Engineering "Team"
yuj1osm
1
230
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
3
540
フォーイット_エンジニア向け会社紹介資料_Forit_Company_Profile.pdf
forit_tech
1
1.7k
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
17
45k
いまからでも遅くない!コンテナでWebアプリを動かしてみよう!コンテナハンズオン編
nomu
0
170
リクルートのエンジニア組織を下支えする 新卒の育成の仕組み
recruitengineers
PRO
1
140
自分だけの仮想クラスタを高速かつ効率的に作る kubefork
donkomura
0
110
4th place solution Eedi - Mining Misconceptions in Mathematics
rist
0
150
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.3k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
The Invisible Side of Design
smashingmag
299
50k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Site-Speed That Sticks
csswizardry
4
410
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Navigating Team Friction
lara
183
15k
Writing Fast Ruby
sferik
628
61k
Agile that works and the tools we love
rasmusluckow
328
21k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Transcript
What understood about that we’ve used LUIS through the year
Shinichi Tanabe January 12, 2018 Minami Aoyama Night #5
Speaker Shinichi Tanabe (田邊 晋一/たなべ しんいち) • NAVITIME JAPAN
Co., Ltd. ◦ Joined in 2008 ◦ Cogbot project ◦ Programmer
Products
None
Encounter
September 15, 2016
None
None
First impression
Easy to use, runs fast and smart.
Easy to use
Let’s go to the portal site! https://www.luis.ai
Step1. Create new app
None
Step2. Add intent
None
Step3. Add utterances
None
Step4. Add entities
None
None
Step5. Train
None
Step6. Test
None
None
None
None
None
Step7. Publish
None
None
That’s all!
Furthermore...
You can get a happy bonus.
Versioning
None
None
None
None
Runs fast and smart
Comparison between and LUIS Dialogflow
Test model
Test model Intent Places.FindPlace Utterances おいしいカレーが食べたいな どこか近くでおすすめのレストランを教えて Entities Cuisine カレー
PlaceType レストラン
Training speed
LUIS 2 - 4 sec Dialogflow 4 - 8 sec
The training speed result of test model
Precision and recall
Test utterance LUIS Dialogflow Intent Entity Intent Entity おいしいカレーが食べたいな 〇
〇 〇 〇 どこか近くでおすすめのレストラ ンを教えて 〇 〇 〇 〇 Precision result of test model
Test utterance LUIS Dialogflow Intent Entity Intent Entity おすすめのバーを教えて 〇
〇 × × おすすめのバー教えて 〇 × × × おいしいうどんが食べたい 〇 〇 〇 × おいしいうどん食べたい 〇 × 〇 × Recall result of test model
Yes, he was perfect!
Getting started
But, we had some questions.
Questions 1. How should we defines intents and entities? 2.
How do we know accuracy and precision? 3. When will he go GA(General Availability)?
1. How should we defines intents and entities?
Anti pattern Utterance : Intent ≒ 1 : 1
Use or copy pre-build model positively.
None
None
2. How do we know accuracy and precision?
Comprehensive test on model
Batch testing
Test result details in a visualized view.
Error matrix
True positive True negative Green zone indicates correct prediction
False negative False positive Red zone indicates incorrect prediction
3. When will he go GA?
LUIS is now GA!!
How to get along with LUIS
Points 1. Start small model which has few intents. 2.
Use or copy pre-build model positively. 3. Raise requests before do something about that yourself.
Thank you!