Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What understood about that we've used LUIS thro...
Search
NAVITIME JAPAN
PRO
January 16, 2018
Technology
0
21
What understood about that we've used LUIS through the year
What understood that we've used LUIS through the year.
NAVITIME JAPAN
PRO
January 16, 2018
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
15k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
550
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
200
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
2.7k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.4k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
320
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.4k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.3k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
7
5.5k
Other Decks in Technology
See All in Technology
2025年8月から始まるAWS Lambda INITフェーズ課金/AWS Lambda INIT phase billing changes
quiver
1
1.2k
SaaS公式MCPサーバーをリリースして得た学び
kawamataryo
5
1.4k
既存の開発資産を活かしながら、 《新規開発コスト抑制》と《開発体験向上》 を両立する拡張アーキテクチャ事例
kubell_hr
0
270
250510 StepFunctionのテスト自動化始めました vol.1
east_takumi
1
260
Coding Agentに値札を付けろ
watany
3
570
Software Delivery Observability CI・CD , DORA metrics も Datadog で可視化しよう / datadog-ci-cd-observability
parupappa2929
0
150
RubyKaigi NOC 近況 2025
sorah
3
1.1k
The PyArrow revolution in Pandas
reuven
0
120
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
56
14k
SRE本出版からまもなく10年!〜これまでに何が起こり、これから何が起こるのか〜
katsuhisa91
PRO
0
350
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
150
Azure × MCP 入門
ry0y4n
8
1.9k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Six Lessons from altMBA
skipperchong
28
3.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
24
2.7k
Writing Fast Ruby
sferik
628
61k
Site-Speed That Sticks
csswizardry
6
550
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Why Our Code Smells
bkeepers
PRO
336
57k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
33k
What's in a price? How to price your products and services
michaelherold
245
12k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Transcript
What understood about that we’ve used LUIS through the year
Shinichi Tanabe January 12, 2018 Minami Aoyama Night #5
Speaker Shinichi Tanabe (田邊 晋一/たなべ しんいち) • NAVITIME JAPAN
Co., Ltd. ◦ Joined in 2008 ◦ Cogbot project ◦ Programmer
Products
None
Encounter
September 15, 2016
None
None
First impression
Easy to use, runs fast and smart.
Easy to use
Let’s go to the portal site! https://www.luis.ai
Step1. Create new app
None
Step2. Add intent
None
Step3. Add utterances
None
Step4. Add entities
None
None
Step5. Train
None
Step6. Test
None
None
None
None
None
Step7. Publish
None
None
That’s all!
Furthermore...
You can get a happy bonus.
Versioning
None
None
None
None
Runs fast and smart
Comparison between and LUIS Dialogflow
Test model
Test model Intent Places.FindPlace Utterances おいしいカレーが食べたいな どこか近くでおすすめのレストランを教えて Entities Cuisine カレー
PlaceType レストラン
Training speed
LUIS 2 - 4 sec Dialogflow 4 - 8 sec
The training speed result of test model
Precision and recall
Test utterance LUIS Dialogflow Intent Entity Intent Entity おいしいカレーが食べたいな 〇
〇 〇 〇 どこか近くでおすすめのレストラ ンを教えて 〇 〇 〇 〇 Precision result of test model
Test utterance LUIS Dialogflow Intent Entity Intent Entity おすすめのバーを教えて 〇
〇 × × おすすめのバー教えて 〇 × × × おいしいうどんが食べたい 〇 〇 〇 × おいしいうどん食べたい 〇 × 〇 × Recall result of test model
Yes, he was perfect!
Getting started
But, we had some questions.
Questions 1. How should we defines intents and entities? 2.
How do we know accuracy and precision? 3. When will he go GA(General Availability)?
1. How should we defines intents and entities?
Anti pattern Utterance : Intent ≒ 1 : 1
Use or copy pre-build model positively.
None
None
2. How do we know accuracy and precision?
Comprehensive test on model
Batch testing
Test result details in a visualized view.
Error matrix
True positive True negative Green zone indicates correct prediction
False negative False positive Red zone indicates incorrect prediction
3. When will he go GA?
LUIS is now GA!!
How to get along with LUIS
Points 1. Start small model which has few intents. 2.
Use or copy pre-build model positively. 3. Raise requests before do something about that yourself.
Thank you!