Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What understood about that we've used LUIS thro...
Search
NAVITIME JAPAN
PRO
January 16, 2018
Technology
0
24
What understood about that we've used LUIS through the year
What understood that we've used LUIS through the year.
NAVITIME JAPAN
PRO
January 16, 2018
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
16k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
890
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
250
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
3.2k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.7k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
380
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.8k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.4k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
8
5.8k
Other Decks in Technology
See All in Technology
re:Invent2025 セッションレポ ~Spec-driven development with Kiro~
nrinetcom
PRO
1
110
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
210
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
130
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2.3k
日本Rubyの会: これまでとこれから
snoozer05
PRO
6
250
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
100
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.2k
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
110
ESXi のAIOps だ!2025冬
unnowataru
0
400
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
740
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
230
Redshift認可、アップデートでどう変わった?
handy
1
100
Featured
See All Featured
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Exploring anti-patterns in Rails
aemeredith
2
210
Paper Plane
katiecoart
PRO
0
44k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Tell your own story through comics
letsgokoyo
0
770
Being A Developer After 40
akosma
91
590k
Building AI with AI
inesmontani
PRO
1
580
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
170
AI: The stuff that nobody shows you
jnunemaker
PRO
1
29
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
240
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Transcript
What understood about that we’ve used LUIS through the year
Shinichi Tanabe January 12, 2018 Minami Aoyama Night #5
Speaker Shinichi Tanabe (田邊 晋一/たなべ しんいち) • NAVITIME JAPAN
Co., Ltd. ◦ Joined in 2008 ◦ Cogbot project ◦ Programmer
Products
None
Encounter
September 15, 2016
None
None
First impression
Easy to use, runs fast and smart.
Easy to use
Let’s go to the portal site! https://www.luis.ai
Step1. Create new app
None
Step2. Add intent
None
Step3. Add utterances
None
Step4. Add entities
None
None
Step5. Train
None
Step6. Test
None
None
None
None
None
Step7. Publish
None
None
That’s all!
Furthermore...
You can get a happy bonus.
Versioning
None
None
None
None
Runs fast and smart
Comparison between and LUIS Dialogflow
Test model
Test model Intent Places.FindPlace Utterances おいしいカレーが食べたいな どこか近くでおすすめのレストランを教えて Entities Cuisine カレー
PlaceType レストラン
Training speed
LUIS 2 - 4 sec Dialogflow 4 - 8 sec
The training speed result of test model
Precision and recall
Test utterance LUIS Dialogflow Intent Entity Intent Entity おいしいカレーが食べたいな 〇
〇 〇 〇 どこか近くでおすすめのレストラ ンを教えて 〇 〇 〇 〇 Precision result of test model
Test utterance LUIS Dialogflow Intent Entity Intent Entity おすすめのバーを教えて 〇
〇 × × おすすめのバー教えて 〇 × × × おいしいうどんが食べたい 〇 〇 〇 × おいしいうどん食べたい 〇 × 〇 × Recall result of test model
Yes, he was perfect!
Getting started
But, we had some questions.
Questions 1. How should we defines intents and entities? 2.
How do we know accuracy and precision? 3. When will he go GA(General Availability)?
1. How should we defines intents and entities?
Anti pattern Utterance : Intent ≒ 1 : 1
Use or copy pre-build model positively.
None
None
2. How do we know accuracy and precision?
Comprehensive test on model
Batch testing
Test result details in a visualized view.
Error matrix
True positive True negative Green zone indicates correct prediction
False negative False positive Red zone indicates incorrect prediction
3. When will he go GA?
LUIS is now GA!!
How to get along with LUIS
Points 1. Start small model which has few intents. 2.
Use or copy pre-build model positively. 3. Raise requests before do something about that yourself.
Thank you!