Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What understood about that we've used LUIS thro...
Search
NAVITIME JAPAN
PRO
January 16, 2018
Technology
0
24
What understood about that we've used LUIS through the year
What understood that we've used LUIS through the year.
NAVITIME JAPAN
PRO
January 16, 2018
Tweet
Share
More Decks by NAVITIME JAPAN
See All by NAVITIME JAPAN
つよつよリーダーが 抜けたらどうする? 〜ナビタイムのAgile⽀援組織の変遷〜
navitimejapan
PRO
23
16k
実践ジオフェンス 効率的に開発するために
navitimejapan
PRO
3
890
安全で使いやすいCarPlayアプリの 魅せ方:HIGと実例から学ぶ
navitimejapan
PRO
1
250
見えないユーザの声はログに埋もれている! ~ログから具体的なユーザの体験を数値化した事例紹介~
navitimejapan
PRO
6
3.2k
ユーザーのためなら 『デザイン』 以外にも手を伸ばせる
navitimejapan
PRO
2
1.7k
フツーのIT女子が、 Engineering Managerになるまで
navitimejapan
PRO
3
380
不確実性に打ち勝つOKR戦略/How to manage uncertainty with OKR strategy
navitimejapan
PRO
4
3.8k
アジャイルを小さいままで 組織に広める 二周目 / Agile Transformation in NAVITIME JAPAN iteration 2
navitimejapan
PRO
4
1.4k
変更障害率0%よりも「継続的な学習と実験」を価値とする 〜障害を「起こってはならないもの」としていた組織がDirtの実施に至るまで〜 / DevOps Transformation in NAVITIME JAPAN
navitimejapan
PRO
8
5.8k
Other Decks in Technology
See All in Technology
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
580
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
140
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
290
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
17k
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
2k
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
270
MySQLのSpatial(GIS)機能をもっと充実させたい ~ MyNA望年会2025LT
sakaik
0
150
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
230
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
4.1k
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
510
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
6
2.3k
Kiro を用いたペアプロのススメ
taikis
4
2k
Featured
See All Featured
How to make the Groovebox
asonas
2
1.9k
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
97
Marketing to machines
jonoalderson
1
4.5k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Abbi's Birthday
coloredviolet
0
3.9k
A designer walks into a library…
pauljervisheath
210
24k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
KATA
mclloyd
PRO
33
15k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
400
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Transcript
What understood about that we’ve used LUIS through the year
Shinichi Tanabe January 12, 2018 Minami Aoyama Night #5
Speaker Shinichi Tanabe (田邊 晋一/たなべ しんいち) • NAVITIME JAPAN
Co., Ltd. ◦ Joined in 2008 ◦ Cogbot project ◦ Programmer
Products
None
Encounter
September 15, 2016
None
None
First impression
Easy to use, runs fast and smart.
Easy to use
Let’s go to the portal site! https://www.luis.ai
Step1. Create new app
None
Step2. Add intent
None
Step3. Add utterances
None
Step4. Add entities
None
None
Step5. Train
None
Step6. Test
None
None
None
None
None
Step7. Publish
None
None
That’s all!
Furthermore...
You can get a happy bonus.
Versioning
None
None
None
None
Runs fast and smart
Comparison between and LUIS Dialogflow
Test model
Test model Intent Places.FindPlace Utterances おいしいカレーが食べたいな どこか近くでおすすめのレストランを教えて Entities Cuisine カレー
PlaceType レストラン
Training speed
LUIS 2 - 4 sec Dialogflow 4 - 8 sec
The training speed result of test model
Precision and recall
Test utterance LUIS Dialogflow Intent Entity Intent Entity おいしいカレーが食べたいな 〇
〇 〇 〇 どこか近くでおすすめのレストラ ンを教えて 〇 〇 〇 〇 Precision result of test model
Test utterance LUIS Dialogflow Intent Entity Intent Entity おすすめのバーを教えて 〇
〇 × × おすすめのバー教えて 〇 × × × おいしいうどんが食べたい 〇 〇 〇 × おいしいうどん食べたい 〇 × 〇 × Recall result of test model
Yes, he was perfect!
Getting started
But, we had some questions.
Questions 1. How should we defines intents and entities? 2.
How do we know accuracy and precision? 3. When will he go GA(General Availability)?
1. How should we defines intents and entities?
Anti pattern Utterance : Intent ≒ 1 : 1
Use or copy pre-build model positively.
None
None
2. How do we know accuracy and precision?
Comprehensive test on model
Batch testing
Test result details in a visualized view.
Error matrix
True positive True negative Green zone indicates correct prediction
False negative False positive Red zone indicates incorrect prediction
3. When will he go GA?
LUIS is now GA!!
How to get along with LUIS
Points 1. Start small model which has few intents. 2.
Use or copy pre-build model positively. 3. Raise requests before do something about that yourself.
Thank you!