Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析で事業貢献するために
Search
Nealle
April 20, 2025
Programming
0
2.1k
データ分析で事業貢献するために
2025/4/22
CHUO_Tech #7 データ分析について語ろう!
https://chuo-tech.connpass.com/event/350259/
Nealle
April 20, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
DevHRに全部賭けろ
nealle
0
140
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
0
1.9k
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
290
生成AI、実際どう? - ニーリーの場合
nealle
0
910
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
16k
ニーリーにおけるプロダクトエンジニア
nealle
0
1.3k
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
490
事業KPIを基に価値の解像度を上げる
nealle
0
490
一人目PdMとして、まず"自分"をPMFさせることから考える
nealle
0
470
Other Decks in Programming
See All in Programming
2分台で1500examples完走!爆速CIを支える環境構築術 - Kaigi on Rails 2025
falcon8823
3
3.4k
iOS 17で追加されたSubscriptionStoreView を利用して5分でサブスク実装チャレンジ
natmark
0
640
実践AIチャットボットUI実装入門
syumai
7
2.5k
階層構造を表現するデータ構造とリファクタリング 〜1年で10倍成長したプロダクトの変化と課題〜
yuhisatoxxx
3
940
(Extension DC 2025) Actor境界を越える技術
teamhimeh
1
240
Swift Concurrency - 状態監視の罠
objectiveaudio
2
480
GitHub Actions × AWS OIDC連携の仕組みと経緯を理解する
ota1022
0
240
CSC305 Lecture 01
javiergs
PRO
1
400
Back to the Future: Let me tell you about the ACP protocol
terhechte
0
130
What's new in Spring Modulith?
olivergierke
1
100
Catch Up: Go Style Guide Update
andpad
0
200
エンジニアとして高みを目指す、 利益を生み出す設計の考え方 / design-for-profit
minodriven
23
12k
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Code Reviewing Like a Champion
maltzj
525
40k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
580
Large-scale JavaScript Application Architecture
addyosmani
514
110k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
YesSQL, Process and Tooling at Scale
rocio
173
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
960
Transcript
2025.04.22 CHUO Tech #7 株式会社ニーリー 上田 健太郎 NEALLE データ分析で事業貢献するために ~ビジネスチームとの伴走で見えたもの~
1
2017年から5年ほどECサイト運営企業にてデータ分析・プロダクト開発・ オンプレ→クラウド移行に従事。 2022年8月にニーリーに入社し、SREチームにてバックエンドシステムの インフラリアーキテクチャ・リリースエンジニアリングに従事。 2023年5月にAnalyticsチームの1人目のメンバーとなった。 好きなSQLクエリエンジンはPresto。 2 自己紹介 株式会社ニーリー Analyticsチーム
エンジニア 上田 健太郎
3 プロダクト紹介
データ分析で事業貢献するためには、データ分析チームとビジネスチームが どう協働すると効率的か? 実際に取り組んで見えてきたことをお話します。 4 今日のお話
5 Analyticsチームとは 「事業や経営の意思決定を支援するデータ分析結果の創出」がミッション。 データ分析だけでなく、分析に必要なデータ基盤の整備も担当。 2023-05 発足 2023-11 データ基盤 (BigQuery) 構築
2024-04 データ基盤本格運用開始 2024-07 汎用ダッシュボードの整備 2024-11 CL向け汎用レポート提供開始 2025-01 データ分析に全力投球 基盤に集めたデータをもとに事業KPIそのものの底上げに貢献すべく、 2025-01からはデータ分析に全力投球。
6 データ分析の進め方 (2025-01~) マーケ • マーケティングチームの「新規契約最大化」の取り組みに参画 • マーケメンバー + Analyticsチーム
で週3回 定例を設定し、分析をルーティン化 • 役割分担 Analytics 初期仮説の提示 定性分析 (アンケート調査等) 分析結果の施策適用 定点観測ダッシュボード整備 定量分析の考察 後続の仮説出し 定量分析 仮説・結果の整理 (図解) 新規契約 (CV) のボトルネックとなっているであろう要素 (仮説) を 有力な順に洗い出す → 一つ一つ検証... という、探索的な分析がメイン。
7 探索的なデータ分析には「目的・仮説・分析結果・施策の繋がりの図解役」を設けるべき。 なぜなら、繋がりはすぐに複雑化し、迷走を招くから。 協働を通して見えたもの① よくある例 MTG #1 もっとも有力な仮説 「新規契約のボトルネックは •••である」を検証しよう。
MTG #2 検証の過程で▲▲▲ということが分かった。 → ◯◯◯はまだ検証中だが、▲▲▲も重要 だから▲▲▲も深掘ろう。 MTG #3 ▲▲▲を深掘ったところ、直感に反して ▪▪▪と分かった。 → 分析ミスが無いチェックしよう。 いつの間にか優先度が低い仮説の検証に多くの時間を割いてしまう (迷走する) ことに...
図解により、議事録を遡ることなく一目で繋がりが分かるようになり、 • 迷走しにくくなった • 分析で得た知見が参照しやすくなり、仮説の精度が上がった 8 図解例: 目的・仮説・分析結果の繋がり 協働を通して見えたもの①
9 データ分析は徐々にビジネスチームに移譲し、データ分析チームは トラッキング強化・データマート整備に注力した方がレバレッジが効きそう。 協働を通して見えたもの② なぜ? • 生成AI (Gemini) により、初歩的な分析はプロンプトで命令するだけで済む →
サポートがあればビジネスチームでも分析の自走が可能 ただし、必要なデータがトラッキングされデータマート化されていることが前提 → ビジネスチームも生成AIも対応しにくいが、分析チームは対応しやすい
② データ分析は徐々にビジネスチームに移譲し、データ分析チームは トラッキング強化・データマート整備に注力した方がレバレッジが効きそう。 10 まとめ データ分析で事業貢献するためには、データ分析チームとビジネスチームが どう協働すると効率的か? について、実際に取り組んで見えてきたことをご紹介しました。 ①
探索的なデータ分析には「目的・仮説・分析結果・施策の繋がりの図解役」 を設けるべき。 似た指摘: AIがBIをどう変革するか - dbt Labs Blog
ニーリーではプロダクトエンジニア、 その他のポジションも積極採用中です! https://jobs.nealle.com/ We are hiring!!!