Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
Search
NearMeの技術発表資料です
PRO
October 28, 2023
Science
0
390
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
NearMeの技術発表資料です
PRO
October 28, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
32
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
21
Hub Labeling による高速経路探索
nearme_tech
PRO
0
62
Build an AI agent with Mastra
nearme_tech
PRO
0
68
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
35
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
78
AIエージェント for 予約フォーム
nearme_tech
PRO
2
140
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
52
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
25
Other Decks in Science
See All in Science
統計学入門講座 第3回スライド
techmathproject
0
100
Online Feedback Optimization
floriandoerfler
0
2.3k
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
科学で迫る勝敗の法則(電気学会・SICE若手セミナー講演 2024年12月) / The principle of victory discovered by science (Lecture for young academists in IEEJ-SICE))
konakalab
0
100
機械学習 - SVM
trycycle
PRO
1
850
KH Coderチュートリアル(スライド版)
koichih
1
41k
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
460
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
980
研究って何だっけ / What is Research?
ks91
PRO
1
100
データマイニング - ノードの中心性
trycycle
PRO
0
120
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
120
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
7
500
Practical Orchestrator
shlominoach
188
11k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Become a Pro
speakerdeck
PRO
28
5.4k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Automating Front-end Workflow
addyosmani
1370
200k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
How to train your dragon (web standard)
notwaldorf
94
6.1k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Building an army of robots
kneath
306
45k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Being A Developer After 40
akosma
90
590k
Transcript
0 2023-10-27 第66回NearMe技術勉強会 Futo Ueno 拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
1 はじめに 参考図書:「拡散モデル –– データ⽣成技術の数理」 https://amzn.asia/d/2anj2zE
2 拡散モデルとは ‧⽣成モデル
3 拡散モデルとは ‧⽣成モデル 拡散モデルは⽣成モデルの⼀種
4 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) →
5 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
6 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
7 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) → ※双⽅に確率微分⽅程式が⽤いられている
8 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
9 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
10 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形 ※ 第⼆項がなければ, 常微分⽅程式(決定論的な微分⽅程式)
11 ブラウン運動 定義
12 ブラウン運動 定義 ※ 特に重要な性質→「インクリメントが正規分布に従う」
13 確率微分⽅程式の数値解法 Euler・丸山スキーム
14 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
15 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
16 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
17 確率微分⽅程式の数値解法 Euler・丸山スキーム
18 確率微分⽅程式の数値解法 Euler・丸山スキーム
19 確率微分⽅程式の数値解法 Euler・丸山スキーム
20 確率微分⽅程式の数値解法 Euler・丸山スキーム 連続極限
21 Langevin⽅程式
22 Langevin⽅程式 あるいは
23 Langevin⽅程式 あるいは
24 Langevin Monte-Carlo法 離散化
25 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則
26 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則 →局所峰にハマりそうになっても, ノイズのおかげで脱出し得る
27 Langevin⽅程式で遊んでみよう
28 コード https://colab.research.google.com/drive/1bjvtn217jlj8XyqiO_K0cUzfq0zNOUw4 ?usp=sharing#scrollTo=_3WF4YS6WOuC
29 遊び⽅ ‧ブラウン運動のサンプルパスを発⽣させてみる ‧1次元Langevin⽅程式のサンプルパスを発⽣させてみる ‧2次元の混合正規分布上をLangevin Monte-Carlo法で遷移した際の軌道を 観察する ‧各パラメータを⾊々と変えてみる
30 うまくいった例 初期点 混合正規分布 終点
31 局所峰に登ったまま終わる例 混合正規分布 初期点 終点
32 局所峰に登ったまま終わる例 混合正規分布 初期点 終点 こういうこともある
33 参考⽂献 ‧岡野原⼤輔 : 「拡散モデル –– データ⽣成技術の数理」. 岩波書店, 2023. ‧⽯村直之
: 「確率微分⽅程式⼊⾨ 数理ファイナンスへの応⽤」. 共⽴出版, 2014.
34 Appendix
35 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ?
36 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ? A. そもそも確率微分⽅程式が怪しい
37 確率積分 これは正当化可能
38 妄想 ‧拡散モデル(の考え⽅)をダイナミックプライシングに利⽤できないだろうか? ‧逆拡散過程に沿ってノイズが取り除かれていく様⼦を、市場原理に揉まれて サービスの価格が均衡していくプロセスと同⼀視できないか? (サービスを市場原理そのものに曝す必要はなく、そのプロセスさえ学習(模倣?) できれば「それらしい」プライスを⽣成できるかも?) 🤔(⼊出⼒が低次元ならわざわざ拡散モデルみたいなことをせずに、 ⼿ごろな数理モデルを⽴ててプライスを推定すればよいのでは…?)
39 Thank you