Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
Search
NearMeの技術発表資料です
PRO
October 28, 2023
Science
0
300
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
NearMeの技術発表資料です
PRO
October 28, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Rustで作る強化学習エージェント
nearme_tech
PRO
0
30
ビームサーチ
nearme_tech
PRO
0
30
WASM入門
nearme_tech
PRO
0
32
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
23
リファクタリングのための第一歩
nearme_tech
PRO
0
63
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
180
確率的プログラミング入門
nearme_tech
PRO
2
110
Observability and OpenTelemetry
nearme_tech
PRO
2
44
観察研究における因果推論
nearme_tech
PRO
1
160
Other Decks in Science
See All in Science
Introduction to Image Processing: 2.Frequ
hachama
0
480
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.4k
WCS-LA-2024
lcolladotor
0
190
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
130
ウェーブレットおきもち講座
aikiriao
1
820
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
890
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
660
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
540
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
5
2.8k
最適化超入門
tkm2261
14
3.5k
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
140
Transformers are Universal in Context Learners
gpeyre
0
720
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Thoughts on Productivity
jonyablonski
69
4.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Making Projects Easy
brettharned
116
6k
A Philosophy of Restraint
colly
203
16k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.3k
Fireside Chat
paigeccino
34
3.2k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Transcript
0 2023-10-27 第66回NearMe技術勉強会 Futo Ueno 拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
1 はじめに 参考図書:「拡散モデル –– データ⽣成技術の数理」 https://amzn.asia/d/2anj2zE
2 拡散モデルとは ‧⽣成モデル
3 拡散モデルとは ‧⽣成モデル 拡散モデルは⽣成モデルの⼀種
4 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) →
5 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
6 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
7 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) → ※双⽅に確率微分⽅程式が⽤いられている
8 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
9 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
10 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形 ※ 第⼆項がなければ, 常微分⽅程式(決定論的な微分⽅程式)
11 ブラウン運動 定義
12 ブラウン運動 定義 ※ 特に重要な性質→「インクリメントが正規分布に従う」
13 確率微分⽅程式の数値解法 Euler・丸山スキーム
14 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
15 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
16 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
17 確率微分⽅程式の数値解法 Euler・丸山スキーム
18 確率微分⽅程式の数値解法 Euler・丸山スキーム
19 確率微分⽅程式の数値解法 Euler・丸山スキーム
20 確率微分⽅程式の数値解法 Euler・丸山スキーム 連続極限
21 Langevin⽅程式
22 Langevin⽅程式 あるいは
23 Langevin⽅程式 あるいは
24 Langevin Monte-Carlo法 離散化
25 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則
26 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則 →局所峰にハマりそうになっても, ノイズのおかげで脱出し得る
27 Langevin⽅程式で遊んでみよう
28 コード https://colab.research.google.com/drive/1bjvtn217jlj8XyqiO_K0cUzfq0zNOUw4 ?usp=sharing#scrollTo=_3WF4YS6WOuC
29 遊び⽅ ‧ブラウン運動のサンプルパスを発⽣させてみる ‧1次元Langevin⽅程式のサンプルパスを発⽣させてみる ‧2次元の混合正規分布上をLangevin Monte-Carlo法で遷移した際の軌道を 観察する ‧各パラメータを⾊々と変えてみる
30 うまくいった例 初期点 混合正規分布 終点
31 局所峰に登ったまま終わる例 混合正規分布 初期点 終点
32 局所峰に登ったまま終わる例 混合正規分布 初期点 終点 こういうこともある
33 参考⽂献 ‧岡野原⼤輔 : 「拡散モデル –– データ⽣成技術の数理」. 岩波書店, 2023. ‧⽯村直之
: 「確率微分⽅程式⼊⾨ 数理ファイナンスへの応⽤」. 共⽴出版, 2014.
34 Appendix
35 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ?
36 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ? A. そもそも確率微分⽅程式が怪しい
37 確率積分 これは正当化可能
38 妄想 ‧拡散モデル(の考え⽅)をダイナミックプライシングに利⽤できないだろうか? ‧逆拡散過程に沿ってノイズが取り除かれていく様⼦を、市場原理に揉まれて サービスの価格が均衡していくプロセスと同⼀視できないか? (サービスを市場原理そのものに曝す必要はなく、そのプロセスさえ学習(模倣?) できれば「それらしい」プライスを⽣成できるかも?) 🤔(⼊出⼒が低次元ならわざわざ拡散モデルみたいなことをせずに、 ⼿ごろな数理モデルを⽴ててプライスを推定すればよいのでは…?)
39 Thank you