Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
NearMeの技術発表資料です
PRO
October 28, 2023
Science
0
450
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
NearMeの技術発表資料です
PRO
October 28, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Tile38 Overview
nearme_tech
PRO
0
35
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
210
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
21
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
450
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
34
ローカルLLM
nearme_tech
PRO
0
55
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
34
Box-Muller法
nearme_tech
PRO
1
55
Kiro触ってみた
nearme_tech
PRO
0
410
Other Decks in Science
See All in Science
データマイニング - グラフデータと経路
trycycle
PRO
1
290
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
380
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
Hakonwa-Quaternion
hiranabe
1
180
My Little Monster
juzishuu
0
560
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.7k
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
530
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
160
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
生成検索エンジン最適化に関する研究の紹介
ynakano
2
2k
Featured
See All Featured
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3.1k
Claude Code のすすめ
schroneko
67
210k
Paper Plane
katiecoart
PRO
0
46k
Believing is Seeing
oripsolob
1
59
What does AI have to do with Human Rights?
axbom
PRO
0
2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
We Have a Design System, Now What?
morganepeng
54
8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Transcript
0 2023-10-27 第66回NearMe技術勉強会 Futo Ueno 拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
1 はじめに 参考図書:「拡散モデル –– データ⽣成技術の数理」 https://amzn.asia/d/2anj2zE
2 拡散モデルとは ‧⽣成モデル
3 拡散モデルとは ‧⽣成モデル 拡散モデルは⽣成モデルの⼀種
4 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) →
5 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
6 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
7 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) → ※双⽅に確率微分⽅程式が⽤いられている
8 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
9 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
10 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形 ※ 第⼆項がなければ, 常微分⽅程式(決定論的な微分⽅程式)
11 ブラウン運動 定義
12 ブラウン運動 定義 ※ 特に重要な性質→「インクリメントが正規分布に従う」
13 確率微分⽅程式の数値解法 Euler・丸山スキーム
14 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
15 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
16 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
17 確率微分⽅程式の数値解法 Euler・丸山スキーム
18 確率微分⽅程式の数値解法 Euler・丸山スキーム
19 確率微分⽅程式の数値解法 Euler・丸山スキーム
20 確率微分⽅程式の数値解法 Euler・丸山スキーム 連続極限
21 Langevin⽅程式
22 Langevin⽅程式 あるいは
23 Langevin⽅程式 あるいは
24 Langevin Monte-Carlo法 離散化
25 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則
26 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則 →局所峰にハマりそうになっても, ノイズのおかげで脱出し得る
27 Langevin⽅程式で遊んでみよう
28 コード https://colab.research.google.com/drive/1bjvtn217jlj8XyqiO_K0cUzfq0zNOUw4 ?usp=sharing#scrollTo=_3WF4YS6WOuC
29 遊び⽅ ‧ブラウン運動のサンプルパスを発⽣させてみる ‧1次元Langevin⽅程式のサンプルパスを発⽣させてみる ‧2次元の混合正規分布上をLangevin Monte-Carlo法で遷移した際の軌道を 観察する ‧各パラメータを⾊々と変えてみる
30 うまくいった例 初期点 混合正規分布 終点
31 局所峰に登ったまま終わる例 混合正規分布 初期点 終点
32 局所峰に登ったまま終わる例 混合正規分布 初期点 終点 こういうこともある
33 参考⽂献 ‧岡野原⼤輔 : 「拡散モデル –– データ⽣成技術の数理」. 岩波書店, 2023. ‧⽯村直之
: 「確率微分⽅程式⼊⾨ 数理ファイナンスへの応⽤」. 共⽴出版, 2014.
34 Appendix
35 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ?
36 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ? A. そもそも確率微分⽅程式が怪しい
37 確率積分 これは正当化可能
38 妄想 ‧拡散モデル(の考え⽅)をダイナミックプライシングに利⽤できないだろうか? ‧逆拡散過程に沿ってノイズが取り除かれていく様⼦を、市場原理に揉まれて サービスの価格が均衡していくプロセスと同⼀視できないか? (サービスを市場原理そのものに曝す必要はなく、そのプロセスさえ学習(模倣?) できれば「それらしい」プライスを⽣成できるかも?) 🤔(⼊出⼒が低次元ならわざわざ拡散モデルみたいなことをせずに、 ⼿ごろな数理モデルを⽴ててプライスを推定すればよいのでは…?)
39 Thank you