Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
Search
NearMeの技術発表資料です
PRO
October 28, 2023
Science
0
390
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
NearMeの技術発表資料です
PRO
October 28, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
38
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
21
Hub Labeling による高速経路探索
nearme_tech
PRO
0
63
Build an AI agent with Mastra
nearme_tech
PRO
0
69
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
36
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
80
AIエージェント for 予約フォーム
nearme_tech
PRO
2
140
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
53
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
26
Other Decks in Science
See All in Science
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
180
統計学入門講座 第1回スライド
techmathproject
0
360
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
280
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
140
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
220
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
660
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
940
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
510
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
490
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
110
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
810
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Balancing Empowerment & Direction
lara
1
410
Side Projects
sachag
455
42k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Raft: Consensus for Rubyists
vanstee
140
7k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
How GitHub (no longer) Works
holman
314
140k
Adopting Sorbet at Scale
ufuk
77
9.4k
Transcript
0 2023-10-27 第66回NearMe技術勉強会 Futo Ueno 拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
1 はじめに 参考図書:「拡散モデル –– データ⽣成技術の数理」 https://amzn.asia/d/2anj2zE
2 拡散モデルとは ‧⽣成モデル
3 拡散モデルとは ‧⽣成モデル 拡散モデルは⽣成モデルの⼀種
4 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) →
5 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
6 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
7 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) → ※双⽅に確率微分⽅程式が⽤いられている
8 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
9 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
10 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形 ※ 第⼆項がなければ, 常微分⽅程式(決定論的な微分⽅程式)
11 ブラウン運動 定義
12 ブラウン運動 定義 ※ 特に重要な性質→「インクリメントが正規分布に従う」
13 確率微分⽅程式の数値解法 Euler・丸山スキーム
14 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
15 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
16 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
17 確率微分⽅程式の数値解法 Euler・丸山スキーム
18 確率微分⽅程式の数値解法 Euler・丸山スキーム
19 確率微分⽅程式の数値解法 Euler・丸山スキーム
20 確率微分⽅程式の数値解法 Euler・丸山スキーム 連続極限
21 Langevin⽅程式
22 Langevin⽅程式 あるいは
23 Langevin⽅程式 あるいは
24 Langevin Monte-Carlo法 離散化
25 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則
26 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則 →局所峰にハマりそうになっても, ノイズのおかげで脱出し得る
27 Langevin⽅程式で遊んでみよう
28 コード https://colab.research.google.com/drive/1bjvtn217jlj8XyqiO_K0cUzfq0zNOUw4 ?usp=sharing#scrollTo=_3WF4YS6WOuC
29 遊び⽅ ‧ブラウン運動のサンプルパスを発⽣させてみる ‧1次元Langevin⽅程式のサンプルパスを発⽣させてみる ‧2次元の混合正規分布上をLangevin Monte-Carlo法で遷移した際の軌道を 観察する ‧各パラメータを⾊々と変えてみる
30 うまくいった例 初期点 混合正規分布 終点
31 局所峰に登ったまま終わる例 混合正規分布 初期点 終点
32 局所峰に登ったまま終わる例 混合正規分布 初期点 終点 こういうこともある
33 参考⽂献 ‧岡野原⼤輔 : 「拡散モデル –– データ⽣成技術の数理」. 岩波書店, 2023. ‧⽯村直之
: 「確率微分⽅程式⼊⾨ 数理ファイナンスへの応⽤」. 共⽴出版, 2014.
34 Appendix
35 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ?
36 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ? A. そもそも確率微分⽅程式が怪しい
37 確率積分 これは正当化可能
38 妄想 ‧拡散モデル(の考え⽅)をダイナミックプライシングに利⽤できないだろうか? ‧逆拡散過程に沿ってノイズが取り除かれていく様⼦を、市場原理に揉まれて サービスの価格が均衡していくプロセスと同⼀視できないか? (サービスを市場原理そのものに曝す必要はなく、そのプロセスさえ学習(模倣?) できれば「それらしい」プライスを⽣成できるかも?) 🤔(⼊出⼒が低次元ならわざわざ拡散モデルみたいなことをせずに、 ⼿ごろな数理モデルを⽴ててプライスを推定すればよいのでは…?)
39 Thank you