Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
Search
NearMeの技術発表資料です
PRO
October 28, 2023
Science
0
390
拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
NearMeの技術発表資料です
PRO
October 28, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
20
Hub Labeling による高速経路探索
nearme_tech
PRO
0
54
Build an AI agent with Mastra
nearme_tech
PRO
0
68
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
33
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
73
AIエージェント for 予約フォーム
nearme_tech
PRO
2
140
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
51
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
24
GitHub Custom Actionのレシピ
nearme_tech
PRO
0
16
Other Decks in Science
See All in Science
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
170
2025-06-11-ai_belgium
sofievl
1
120
Online Feedback Optimization
floriandoerfler
0
2.2k
データベース02: データベースの概念
trycycle
PRO
2
750
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
140
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
160
データベース03: 関係データモデル
trycycle
PRO
1
120
CV_3_Keypoints
hachama
0
190
IWASAKI Hideo
genomethica
0
110
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
470
創薬における機械学習技術について
kanojikajino
16
5.3k
高校生就活へのDA導入の提案
shunyanoda
0
300
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
57
9.4k
Automating Front-end Workflow
addyosmani
1370
200k
Facilitating Awesome Meetings
lara
54
6.4k
How STYLIGHT went responsive
nonsquared
100
5.6k
Designing for humans not robots
tammielis
253
25k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
930
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Statistics for Hackers
jakevdp
799
220k
Transcript
0 2023-10-27 第66回NearMe技術勉強会 Futo Ueno 拡散モデルの概要 −§1. 拡散モデルで使われる確率微分⽅程式について−
1 はじめに 参考図書:「拡散モデル –– データ⽣成技術の数理」 https://amzn.asia/d/2anj2zE
2 拡散モデルとは ‧⽣成モデル
3 拡散モデルとは ‧⽣成モデル 拡散モデルは⽣成モデルの⼀種
4 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) →
5 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
6 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) →
7 2つのモデル ‧スコアベースモデル (SBM; Score Based Model) → ‧デノイジング拡散確率モデル (DDPM;
Denoising Diffusion Probabilistic Model) → ※双⽅に確率微分⽅程式が⽤いられている
8 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
9 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形
10 確率微分⽅程式 確率微分⽅程式(SDE; Stochastic differential equation)の⼀般形 ※ 第⼆項がなければ, 常微分⽅程式(決定論的な微分⽅程式)
11 ブラウン運動 定義
12 ブラウン運動 定義 ※ 特に重要な性質→「インクリメントが正規分布に従う」
13 確率微分⽅程式の数値解法 Euler・丸山スキーム
14 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
15 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
16 確率微分⽅程式の数値解法 Euler・丸山スキーム 離散化
17 確率微分⽅程式の数値解法 Euler・丸山スキーム
18 確率微分⽅程式の数値解法 Euler・丸山スキーム
19 確率微分⽅程式の数値解法 Euler・丸山スキーム
20 確率微分⽅程式の数値解法 Euler・丸山スキーム 連続極限
21 Langevin⽅程式
22 Langevin⽅程式 あるいは
23 Langevin⽅程式 あるいは
24 Langevin Monte-Carlo法 離散化
25 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則
26 Langevin Monte-Carlo法 離散化 ノイズの影響を受けながら尤度が⾼い領域に進⾏する更新則 →局所峰にハマりそうになっても, ノイズのおかげで脱出し得る
27 Langevin⽅程式で遊んでみよう
28 コード https://colab.research.google.com/drive/1bjvtn217jlj8XyqiO_K0cUzfq0zNOUw4 ?usp=sharing#scrollTo=_3WF4YS6WOuC
29 遊び⽅ ‧ブラウン運動のサンプルパスを発⽣させてみる ‧1次元Langevin⽅程式のサンプルパスを発⽣させてみる ‧2次元の混合正規分布上をLangevin Monte-Carlo法で遷移した際の軌道を 観察する ‧各パラメータを⾊々と変えてみる
30 うまくいった例 初期点 混合正規分布 終点
31 局所峰に登ったまま終わる例 混合正規分布 初期点 終点
32 局所峰に登ったまま終わる例 混合正規分布 初期点 終点 こういうこともある
33 参考⽂献 ‧岡野原⼤輔 : 「拡散モデル –– データ⽣成技術の数理」. 岩波書店, 2023. ‧⽯村直之
: 「確率微分⽅程式⼊⾨ 数理ファイナンスへの応⽤」. 共⽴出版, 2014.
34 Appendix
35 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ?
36 素朴な疑問 Q. ⼀応「微分⽅程式」の解なのに⾄る所でギザギザしてるのはなぜ? A. そもそも確率微分⽅程式が怪しい
37 確率積分 これは正当化可能
38 妄想 ‧拡散モデル(の考え⽅)をダイナミックプライシングに利⽤できないだろうか? ‧逆拡散過程に沿ってノイズが取り除かれていく様⼦を、市場原理に揉まれて サービスの価格が均衡していくプロセスと同⼀視できないか? (サービスを市場原理そのものに曝す必要はなく、そのプロセスさえ学習(模倣?) できれば「それらしい」プライスを⽣成できるかも?) 🤔(⼊出⼒が低次元ならわざわざ拡散モデルみたいなことをせずに、 ⼿ごろな数理モデルを⽴ててプライスを推定すればよいのでは…?)
39 Thank you