Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列分析 ハンズオン
Search
NearMeの技術発表資料です
PRO
December 23, 2022
Research
0
170
時系列分析 ハンズオン
NearMeの技術発表資料です
PRO
December 23, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
240
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
80
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
8
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
140
Rust 並列強化学習
nearme_tech
PRO
0
24
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
150
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
40
Hub Labeling による高速経路探索
nearme_tech
PRO
0
100
Build an AI agent with Mastra
nearme_tech
PRO
0
84
Other Decks in Research
See All in Research
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.5k
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
190
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
210
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
0
340
20250624_熊本経済同友会6月例会講演
trafficbrain
1
610
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
16
9.9k
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
140
20250725-bet-ai-day
cipepser
2
420
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
130
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
5
1.5k
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
610
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
The Language of Interfaces
destraynor
161
25k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Documentation Writing (for coders)
carmenintech
74
5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Being A Developer After 40
akosma
90
590k
Transcript
0 時系列分析 ハンズオン 2022-12-23 第26回NearMe技術勉強会 Takuma Kakinoue
1 時系列分析 • 時系列データとは ◦ 一定間隔(日・月・年など)で記録された時間的順序のあるデータのこと e.g. 毎時間の気温の変化、毎日の売上データ • 時系列分析とは
◦ 時系列データの変動を長期的変動(トレンド)成分、季節的変動成分、外的要因に よる変動成分などの要素に分解して、将来の変動を予測する手法 ◦ Pythonフレームワークには、DartsやProphet、DeepAR、 Greykite(今回使用)などがある
2 時系列データを要素に分解する • 自己相関(Auto Regression) ◦ 直近の過去の値による影響 e.g. n日目の売上 ∝
n-1日目の売上 + n-2日目の売上 • 長期的変動(Integrated)/ トレンド(Trend) ◦ 時間経過と共に増加する、あるいは、減少するといった長期的な傾向のこと • 季節的変動(Seasonality) ◦ 月や曜日などの周期的なものに関連した変動のこと e.g. 夏は売上が多い • 外的要因 ◦ 外部の影響による変化のこと e.g. コロナの影響で売上低下
3 今回用いる Greykite について • 従来手法(ProphetやDeepAR) ◦ 各時点の値は確率分布に従うと仮定し、その確率分布の平均と分散を 同時に予測する •
従来手法の欠点 ◦ Prophetは、解釈可能だが、ベイズ推定を用いるため計算が遅い ◦ DeepARは、深層学習を使うことで精度は良いが、解釈可能でない • Grekiteの優位性 ◦ 平均の予測と分散の予測を異なるモデルで行うことで精度と計算速度を向上 ◦ 予測モデルには、線形回帰や決定木などを用いるので解釈可能
4 参考文献 • NRI ナレッジインサイト, https://www.nri.com/jp/knowledge/glossary/lst/sa/time_series_analysis#:~:t ext=%E6%99%82%E7%B3%BB%E5%88%97%E5%88%86%E6%9E%90%E3 %81%A8%E3%81%AF,%E5%80%A4%E3%82%92%E4%BA%88%E6%B8%A C%E3%81%99%E3%82%8B%E3%82%82%E3%81%AE%E3%80%82 •
Greykite: Deploying Flexible Forecasting at Scale at LinkedIn, KDD2022, https://arxiv.org/abs/2207.07788
5 Thank you