Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列分析 ハンズオン
Search
NearMeの技術発表資料です
PRO
December 23, 2022
Research
0
170
時系列分析 ハンズオン
NearMeの技術発表資料です
PRO
December 23, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
3
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
150
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
22
ローカルLLM
nearme_tech
PRO
0
41
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
26
Box-Muller法
nearme_tech
PRO
1
37
Kiro触ってみた
nearme_tech
PRO
0
310
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
560
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
Other Decks in Research
See All in Research
CoRL2025速報
rpc
3
3.6k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
370
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
210
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
380
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
220
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
超高速データサイエンス
matsui_528
1
320
財務諸表監査のための逐次検定
masakat0
0
210
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
460
Featured
See All Featured
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
47k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
31
So, you think you're a good person
axbom
PRO
0
1.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
First, design no harm
axbom
PRO
1
1.1k
Building AI with AI
inesmontani
PRO
1
570
[SF Ruby Conf 2025] Rails X
palkan
0
560
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
0 時系列分析 ハンズオン 2022-12-23 第26回NearMe技術勉強会 Takuma Kakinoue
1 時系列分析 • 時系列データとは ◦ 一定間隔(日・月・年など)で記録された時間的順序のあるデータのこと e.g. 毎時間の気温の変化、毎日の売上データ • 時系列分析とは
◦ 時系列データの変動を長期的変動(トレンド)成分、季節的変動成分、外的要因に よる変動成分などの要素に分解して、将来の変動を予測する手法 ◦ Pythonフレームワークには、DartsやProphet、DeepAR、 Greykite(今回使用)などがある
2 時系列データを要素に分解する • 自己相関(Auto Regression) ◦ 直近の過去の値による影響 e.g. n日目の売上 ∝
n-1日目の売上 + n-2日目の売上 • 長期的変動(Integrated)/ トレンド(Trend) ◦ 時間経過と共に増加する、あるいは、減少するといった長期的な傾向のこと • 季節的変動(Seasonality) ◦ 月や曜日などの周期的なものに関連した変動のこと e.g. 夏は売上が多い • 外的要因 ◦ 外部の影響による変化のこと e.g. コロナの影響で売上低下
3 今回用いる Greykite について • 従来手法(ProphetやDeepAR) ◦ 各時点の値は確率分布に従うと仮定し、その確率分布の平均と分散を 同時に予測する •
従来手法の欠点 ◦ Prophetは、解釈可能だが、ベイズ推定を用いるため計算が遅い ◦ DeepARは、深層学習を使うことで精度は良いが、解釈可能でない • Grekiteの優位性 ◦ 平均の予測と分散の予測を異なるモデルで行うことで精度と計算速度を向上 ◦ 予測モデルには、線形回帰や決定木などを用いるので解釈可能
4 参考文献 • NRI ナレッジインサイト, https://www.nri.com/jp/knowledge/glossary/lst/sa/time_series_analysis#:~:t ext=%E6%99%82%E7%B3%BB%E5%88%97%E5%88%86%E6%9E%90%E3 %81%A8%E3%81%AF,%E5%80%A4%E3%82%92%E4%BA%88%E6%B8%A C%E3%81%99%E3%82%8B%E3%82%82%E3%81%AE%E3%80%82 •
Greykite: Deploying Flexible Forecasting at Scale at LinkedIn, KDD2022, https://arxiv.org/abs/2207.07788
5 Thank you