Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列分析 ハンズオン
Search
NearMeの技術発表資料です
PRO
December 23, 2022
Research
0
170
時系列分析 ハンズオン
NearMeの技術発表資料です
PRO
December 23, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
82
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
18
ローカルLLM
nearme_tech
PRO
0
32
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
19
Box-Muller法
nearme_tech
PRO
1
34
Kiro触ってみた
nearme_tech
PRO
0
250
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
520
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
120
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
79
Other Decks in Research
See All in Research
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
400
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
能動適応的実験計画
masakat0
2
1.1k
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
170
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
440
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
170
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.4k
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
100
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
330
snlp2025_prevent_llm_spikes
takase
0
420
20250725-bet-ai-day
cipepser
3
550
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.2k
Visualization
eitanlees
150
16k
A designer walks into a library…
pauljervisheath
210
24k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Designing Experiences People Love
moore
143
24k
Agile that works and the tools we love
rasmusluckow
331
21k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Raft: Consensus for Rubyists
vanstee
141
7.2k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
What's in a price? How to price your products and services
michaelherold
246
13k
The Language of Interfaces
destraynor
162
25k
GraphQLとの向き合い方2022年版
quramy
50
14k
Transcript
0 時系列分析 ハンズオン 2022-12-23 第26回NearMe技術勉強会 Takuma Kakinoue
1 時系列分析 • 時系列データとは ◦ 一定間隔(日・月・年など)で記録された時間的順序のあるデータのこと e.g. 毎時間の気温の変化、毎日の売上データ • 時系列分析とは
◦ 時系列データの変動を長期的変動(トレンド)成分、季節的変動成分、外的要因に よる変動成分などの要素に分解して、将来の変動を予測する手法 ◦ Pythonフレームワークには、DartsやProphet、DeepAR、 Greykite(今回使用)などがある
2 時系列データを要素に分解する • 自己相関(Auto Regression) ◦ 直近の過去の値による影響 e.g. n日目の売上 ∝
n-1日目の売上 + n-2日目の売上 • 長期的変動(Integrated)/ トレンド(Trend) ◦ 時間経過と共に増加する、あるいは、減少するといった長期的な傾向のこと • 季節的変動(Seasonality) ◦ 月や曜日などの周期的なものに関連した変動のこと e.g. 夏は売上が多い • 外的要因 ◦ 外部の影響による変化のこと e.g. コロナの影響で売上低下
3 今回用いる Greykite について • 従来手法(ProphetやDeepAR) ◦ 各時点の値は確率分布に従うと仮定し、その確率分布の平均と分散を 同時に予測する •
従来手法の欠点 ◦ Prophetは、解釈可能だが、ベイズ推定を用いるため計算が遅い ◦ DeepARは、深層学習を使うことで精度は良いが、解釈可能でない • Grekiteの優位性 ◦ 平均の予測と分散の予測を異なるモデルで行うことで精度と計算速度を向上 ◦ 予測モデルには、線形回帰や決定木などを用いるので解釈可能
4 参考文献 • NRI ナレッジインサイト, https://www.nri.com/jp/knowledge/glossary/lst/sa/time_series_analysis#:~:t ext=%E6%99%82%E7%B3%BB%E5%88%97%E5%88%86%E6%9E%90%E3 %81%A8%E3%81%AF,%E5%80%A4%E3%82%92%E4%BA%88%E6%B8%A C%E3%81%99%E3%82%8B%E3%82%82%E3%81%AE%E3%80%82 •
Greykite: Deploying Flexible Forecasting at Scale at LinkedIn, KDD2022, https://arxiv.org/abs/2207.07788
5 Thank you