Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列予測モデル1
Search
NearMeの技術発表資料です
PRO
January 06, 2023
Research
0
130
時系列予測モデル1
NearMeの技術発表資料です
PRO
January 06, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
120
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
21
ローカルLLM
nearme_tech
PRO
0
37
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
23
Box-Muller法
nearme_tech
PRO
1
36
Kiro触ってみた
nearme_tech
PRO
0
290
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
550
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
130
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
87
Other Decks in Research
See All in Research
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
2.1k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
360
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
350
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
290
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
280
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
760
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
音声感情認識技術の進展と展望
nagase
0
400
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
150
Featured
See All Featured
Docker and Python
trallard
47
3.7k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
180
Agile that works and the tools we love
rasmusluckow
331
21k
Navigating Team Friction
lara
191
16k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Being A Developer After 40
akosma
91
590k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
A designer walks into a library…
pauljervisheath
210
24k
Prompt Engineering for Job Search
mfonobong
0
120
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The Language of Interfaces
destraynor
162
25k
Transcript
0 時系列予測モデル1 2022-1-6 第27回NearMe技術勉強会 Hazuki Shibayama
1 目次 • 時系列モデル • 定常性
2 時系列予測モデル • 過去の値を説明変数として,現在の値を予測 • 時系列データの不規則な変動を確率的なモデルで表現 ◦ 自己回帰モデル(ARモデル) ◦ 移動平均モデル(MAモデル)
◦ ARMAモデル ◦ ARIMAモデル ◦ 指数平滑モデル ◦ ウィンタースモデル 等
3 定常性 データの背後にある確率過程が時間変化に応じて変化しない場合,定常性がある 時系列データを各時間t ∈ {1… 𝑛}ごとの分布から抽出された確率変数𝑅𝑡 の列とみなす 実現値{𝑟1, 𝑟2
, 𝑟3 , … , 𝑟𝑛 } 確率変数列{𝑅1, 𝑅2 , 𝑅3 , … , 𝑅𝑛 } データが定常性を持つ条件 ①各分布の平均E 𝑅𝑡 が一定 ②分散V 𝑅𝑡 も一定 ③自己共分散Cov(𝑅𝑡, 𝑅𝑡−ℎ)はラグhのみに依存 各時点の確率変数の分布が異なるイメージ →これは非定常 時間とともに変化する確率変数
4 定常性 要するに定常性とは 平均回帰的(データが平均の方向に戻っていく傾向)で,トレンドや季節性を持たないデータ 定常なデータ ex) ホワイトノイズ, 非定常なデータ ex)GDP,株価(世の中のデータのほとんど)
5 定常性 • 定常性の確認方法 ◦ 視覚化(データを見る) ◦ 自己相関関数をプロット ◦ 単位根検定
等 • 定常なデータに使えるモデル ◦ 自己回帰モデル(ARモデル) ◦ 移動平均モデル(MAモデル) ◦ ARMAモデル ◦ 指数平滑モデル 等 • 非定常なデータに使えるモデル ◦ ARIMAモデル ◦ SARIMAモデル ◦ 状態空間モデル 等
6 参考文献 時系列解析における定常過程について解説 (https://bigdata-tools.com/time-series-teijo-katei/) [R]時系列分析の基礎まとめ - Qiita (https://qiita.com/YM_DSKR/items/2528548913378bfbf9bc) 時系列解析の定常性入門 -
Qiita (https://qiita.com/maruman029/items/59737da812a0ca21458e) 時系列データの定常性の検出 (https://ichi.pro/toki-keiretsu-de-ta-no-teijosei-no-kenshutsu-231576216659512)
7 Thank you