Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列予測モデル1
Search
NearMeの技術発表資料です
PRO
January 06, 2023
Research
0
110
時系列予測モデル1
NearMeの技術発表資料です
PRO
January 06, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
0
35
確率的プログラミング入門
nearme_tech
PRO
2
35
Observability and OpenTelemetry
nearme_tech
PRO
2
29
観察研究における因果推論
nearme_tech
PRO
1
72
React
nearme_tech
PRO
2
33
Architecture Decision Record (ADR)
nearme_tech
PRO
1
820
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
46
Fractional Derivative!
nearme_tech
PRO
1
37
GitHub Projectsにおける チケットの ステータス更新自動化について
nearme_tech
PRO
1
58
Other Decks in Research
See All in Research
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
6
710
最近のVisual Odometryと Depth Estimation
sgk
1
270
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
650
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
0
160
機械学習でヒトの行動を変える
hiromu1996
1
310
精度を無視しない推薦多様化の評価指標
kuri8ive
1
250
ダイナミックプライシング とその実例
skmr2348
3
410
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
750
大規模言語モデルのバイアス
yukinobaba
PRO
4
710
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
360
ニューラルネットワークの損失地形
joisino
PRO
35
16k
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Into the Great Unknown - MozCon
thekraken
32
1.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
BBQ
matthewcrist
85
9.3k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
Gamification - CAS2011
davidbonilla
80
5k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Faster Mobile Websites
deanohume
305
30k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Transcript
0 時系列予測モデル1 2022-1-6 第27回NearMe技術勉強会 Hazuki Shibayama
1 目次 • 時系列モデル • 定常性
2 時系列予測モデル • 過去の値を説明変数として,現在の値を予測 • 時系列データの不規則な変動を確率的なモデルで表現 ◦ 自己回帰モデル(ARモデル) ◦ 移動平均モデル(MAモデル)
◦ ARMAモデル ◦ ARIMAモデル ◦ 指数平滑モデル ◦ ウィンタースモデル 等
3 定常性 データの背後にある確率過程が時間変化に応じて変化しない場合,定常性がある 時系列データを各時間t ∈ {1… 𝑛}ごとの分布から抽出された確率変数𝑅𝑡 の列とみなす 実現値{𝑟1, 𝑟2
, 𝑟3 , … , 𝑟𝑛 } 確率変数列{𝑅1, 𝑅2 , 𝑅3 , … , 𝑅𝑛 } データが定常性を持つ条件 ①各分布の平均E 𝑅𝑡 が一定 ②分散V 𝑅𝑡 も一定 ③自己共分散Cov(𝑅𝑡, 𝑅𝑡−ℎ)はラグhのみに依存 各時点の確率変数の分布が異なるイメージ →これは非定常 時間とともに変化する確率変数
4 定常性 要するに定常性とは 平均回帰的(データが平均の方向に戻っていく傾向)で,トレンドや季節性を持たないデータ 定常なデータ ex) ホワイトノイズ, 非定常なデータ ex)GDP,株価(世の中のデータのほとんど)
5 定常性 • 定常性の確認方法 ◦ 視覚化(データを見る) ◦ 自己相関関数をプロット ◦ 単位根検定
等 • 定常なデータに使えるモデル ◦ 自己回帰モデル(ARモデル) ◦ 移動平均モデル(MAモデル) ◦ ARMAモデル ◦ 指数平滑モデル 等 • 非定常なデータに使えるモデル ◦ ARIMAモデル ◦ SARIMAモデル ◦ 状態空間モデル 等
6 参考文献 時系列解析における定常過程について解説 (https://bigdata-tools.com/time-series-teijo-katei/) [R]時系列分析の基礎まとめ - Qiita (https://qiita.com/YM_DSKR/items/2528548913378bfbf9bc) 時系列解析の定常性入門 -
Qiita (https://qiita.com/maruman029/items/59737da812a0ca21458e) 時系列データの定常性の検出 (https://ichi.pro/toki-keiretsu-de-ta-no-teijosei-no-kenshutsu-231576216659512)
7 Thank you