Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
時系列予測モデル1
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
NearMeの技術発表資料です
PRO
January 06, 2023
Research
0
130
時系列予測モデル1
NearMeの技術発表資料です
PRO
January 06, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Tile38 Overview
nearme_tech
PRO
0
35
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
210
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
21
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
440
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
34
ローカルLLM
nearme_tech
PRO
0
55
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
34
Box-Muller法
nearme_tech
PRO
1
55
Kiro触ってみた
nearme_tech
PRO
0
410
Other Decks in Research
See All in Research
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
170
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
630
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
Featured
See All Featured
AI: The stuff that nobody shows you
jnunemaker
PRO
2
270
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
110
4 Signs Your Business is Dying
shpigford
187
22k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
A Soul's Torment
seathinner
5
2.3k
So, you think you're a good person
axbom
PRO
2
1.9k
Transcript
0 時系列予測モデル1 2022-1-6 第27回NearMe技術勉強会 Hazuki Shibayama
1 目次 • 時系列モデル • 定常性
2 時系列予測モデル • 過去の値を説明変数として,現在の値を予測 • 時系列データの不規則な変動を確率的なモデルで表現 ◦ 自己回帰モデル(ARモデル) ◦ 移動平均モデル(MAモデル)
◦ ARMAモデル ◦ ARIMAモデル ◦ 指数平滑モデル ◦ ウィンタースモデル 等
3 定常性 データの背後にある確率過程が時間変化に応じて変化しない場合,定常性がある 時系列データを各時間t ∈ {1… 𝑛}ごとの分布から抽出された確率変数𝑅𝑡 の列とみなす 実現値{𝑟1, 𝑟2
, 𝑟3 , … , 𝑟𝑛 } 確率変数列{𝑅1, 𝑅2 , 𝑅3 , … , 𝑅𝑛 } データが定常性を持つ条件 ①各分布の平均E 𝑅𝑡 が一定 ②分散V 𝑅𝑡 も一定 ③自己共分散Cov(𝑅𝑡, 𝑅𝑡−ℎ)はラグhのみに依存 各時点の確率変数の分布が異なるイメージ →これは非定常 時間とともに変化する確率変数
4 定常性 要するに定常性とは 平均回帰的(データが平均の方向に戻っていく傾向)で,トレンドや季節性を持たないデータ 定常なデータ ex) ホワイトノイズ, 非定常なデータ ex)GDP,株価(世の中のデータのほとんど)
5 定常性 • 定常性の確認方法 ◦ 視覚化(データを見る) ◦ 自己相関関数をプロット ◦ 単位根検定
等 • 定常なデータに使えるモデル ◦ 自己回帰モデル(ARモデル) ◦ 移動平均モデル(MAモデル) ◦ ARMAモデル ◦ 指数平滑モデル 等 • 非定常なデータに使えるモデル ◦ ARIMAモデル ◦ SARIMAモデル ◦ 状態空間モデル 等
6 参考文献 時系列解析における定常過程について解説 (https://bigdata-tools.com/time-series-teijo-katei/) [R]時系列分析の基礎まとめ - Qiita (https://qiita.com/YM_DSKR/items/2528548913378bfbf9bc) 時系列解析の定常性入門 -
Qiita (https://qiita.com/maruman029/items/59737da812a0ca21458e) 時系列データの定常性の検出 (https://ichi.pro/toki-keiretsu-de-ta-no-teijosei-no-kenshutsu-231576216659512)
7 Thank you