Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CBoW入門
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kento Nozawa
April 21, 2016
Research
4
3.6k
CBoW入門
2016年4月22日の機械学習勉強会の資料
Continuous Bag of Wordsの入門スライドです
Kento Nozawa
April 21, 2016
Tweet
Share
More Decks by Kento Nozawa
See All by Kento Nozawa
Analysis on Negative Sample Size in Contrastive Unsupervised Representation Learning
nzw0301
0
180
[IJCAI-ECAI 2022] Evaluation Methods for Representation Learning: A Survey
nzw0301
0
640
[NeurIPS Japan meetup 2021 talk] Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
230
[IBIS2021] 対照的自己教師付き表現学習おける負例数の解析
nzw0301
0
210
Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning
nzw0301
0
520
Introduction of PAC-Bayes and its Application for Contrastive Unsupervised Representation Learning
nzw0301
2
850
NLP Tutorial; word representation learning
nzw0301
0
230
Analyzing Centralities of Embedded Nodes
nzw0301
0
200
Paper Reading: Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
nzw0301
2
1.2k
Other Decks in Research
See All in Research
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
330
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
480
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.8k
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
POI: Proof of Identity
katsyoshi
0
140
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
210
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
320
Featured
See All Featured
Side Projects
sachag
455
43k
Mobile First: as difficult as doing things right
swwweet
225
10k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
51
The Limits of Empathy - UXLibs8
cassininazir
1
210
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Transcript
Continuous Bag of Wordsೖ @ػցֶशษڧձ 201604݄22ʢۚʣ M1
ࠓ͢͜ͱ • ଟύʔηϓτϩϯ (MLP) • Continuous Bag of Words •
word2vecʹ͋ΔยํͷϞσϧ • ߴԽNGʹ͍ͭͯݴٴ͠·ͤΜ
ଟύʔηϓτϩϯͷ͓͞Β͍ • ؙɿ1ͭͷΛड͚ͯɼؔΛద༻ͯ͠1ͭͷΛग़ྗ ʢؙ1ͭΛϢχοτɼؔΛ׆ੑԽؔʣ • ҹɿϢχοτͷग़ྗͱॏΈʢʣͷੵΛ࣍ͷʹ Ͱ͖Δ͚ͩਖ਼ղ͢ΔΑ͏ͳॏΈΛٻΊΔ Input layer hidden
layer output layer (soft max) x1 h3 h1 h2 x2 x3 x4 0.2 0.5 0.3
ଟύʔηϓτϩϯͷ۩ମྫ • 4୯ޠ͔͠ͳ͍ੈքΛߟ͑Δ • [jobs, mac, win8, ms] • ೖྗɿจॻ
• ग़ྗɿ֬ʢೖྗจॻ͕”mac”͔”windowns”ʣ Input layer hidden layer output layer (softmax) jobs h3 h1 h2 mac win8 ms p(mac)=0.2 p(win)=0.8
۩ମྫɿೖྗ ͦΕͧΕ୯ޠͷස͕ೖྗͷೖྗ • doc0: [win8, win8, ms, ms, ms, jobs]
-> ms • doc1: [jobs, mac, mac, mac, mac, mac, mac] -> mac Input layer hidden layer output layer (softmax) jobs=1 h3 h1 h2 mac=0 win8=2 ms=3 Input layer hidden layer output layer (softmax) jobs=1 h3 h1 h2 mac=6 win8=0 ms=0 doc0 doc1
۩ମྫɿӅΕ ೖྗ-ӅΕؒͷॏΈߦྻWɼ3x4ͷߦྻ ӅΕɼ(ೖྗͷग़ྗ)x(ॏΈ)ͷhΛड͚औΔ doc0 2 4 1 2 3 0
1 2 1 2 1 1 1 1 3 5 2 6 6 4 1 0 2 3 3 7 7 5 = 2 4 7 9 5 3 5 Input layer hidden layer output layer (softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3 Wx = h
۩ମྫɿӅΕ ೖྗ-ӅΕؒͷॏΈߦྻWɼ3x4ͷߦྻ ӅΕɼ(ೖྗͷग़ྗ)x(ॏΈ)ͷhΛड͚औΔ doc0 2 4 1 2 3 0
1 2 1 2 1 1 1 1 3 5 2 6 6 4 1 0 2 3 3 7 7 5 = 2 4 7 9 5 3 5 Input layer hidden layer output layer (softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3
۩ମྫɿӅΕ ׆ੑԽؔ f(x) Λ௨ͯ͠ӅΕ͔Βग़ྗ doc0 Input layer hidden layer output
layer (softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3 By Chrislb - created by Chrislb, CC දࣔ-ܧঝ 3.0, https://commons.wikimedia.org/w/index.php?curid=223990 ؔྫɿγάϞΠυؔ
۩ମྫɿग़ྗ ӅΕ-ग़ྗͷॏΈW’ɼ2x3ͷߦྻ ग़ྗɼ(ӅΕͷग़ྗ)x(ॏΈ)ͷΛड͚औΔ doc0 Input layer hidden layer output layer
(softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3 -0.1 0.1 1 1 1.01 1 1 1.01 2 4 0.99 0.99 0.99 3 5 = 1.0 1.0 W0f(h) = u o
ग़ྗͷ׆ੑԽؔ ग़ྗͷ׆ੑԽؔɿ֬Λग़ྗ͢Δsoftmaxؔ doc0(=[win8, win8, ms, ms, ms, jobs])0.54Ͱwinͷจॻ Input layer
hidden layer output layer (softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3 -0.1 0.1 p(mac)=0.46 p(win)=0.54 exi P n exn e0.1 e0.1 + e 0.1 = 0.54 e 0.1 e0.1 + e 0.1 = 0.46
ֶश • ޡࠩٯ๏ΛͬͯॏΈW, W’ Λௐઅ͠ɼdoc0͕win ʹͳΔ֬ΛߴΊΔΑ͏ʹֶश • doc0ͱ͖ɼޡࠩͷݩʹͳΔͷਖ਼ղϥϕϧ [0, 1]
Input layer hidden layer output layer (softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3 -0.1 0.1 p(mac)=0.46 p(win)=0.54
CBoWͷΞϧΰϦζϜ MLP͕Θ͔Εָͳͣɽɽɽɽ
one—hotදݱ • ୯ޠΛޠኮ࣍ݩVͷϕΫτϧͰදݱ • ରԠ͢Δ࣍ݩ͚ͩ1ɼΓ0 ྫɿ͠{I, drink, coffee, everyday} ͳΒ
I = [1, 0, 0, 0] drink = [0, 1, 0, 0] coffee = [0, 0, 1, 0] everyday = [0, 0, 0, 1]
จ຺૭෯ ͋Δจʹ͓͍ͯ͢Δ1୯ޠͷपғn୯ޠΛѻ͏ ͜ͷͱ͖ɼnΛจ຺૭෯ͱ͍͏ Q. I drink coffee everydayͰจ຺૭෯2ҎԼʹग़ݱ͢Δ Bog of
Wordsʁ A. [I, drink, everyday]
Continuous Bag of Wordsɿ֓ཁ • 3ͷχϡʔϥϧωοτ • ೖྗɿจ຺૭෯ҎԼͰڞى͢Δ୯ޠ • ग़ྗɿ1୯ޠͷ֬
Continuous Bag of Wordsɿೖྗ MLPͷೖྗ͕ਤͷೖྗͷശ1ͭʹ૬ Input layer hidden layer output
layer (softmax) jobs=1 f(5)=0.99 f(7)=0.99 f(9)=0.99 mac=0 win8=2 ms=3 MLP
Continuous Bag of Wordsɿೖྗ • ശ1ͭone-hotදݱΛड͚औΔ • I drink coffee
everyday Ͱw(t)=coffee drink= [0, 1, 0, 0] ͕͍෦ͷͱΔ coffee
Continuous Bag of Wordsɿೖྗ I = [0, 1, 0, 0]
drink= [0, 1, 0, 0] everyday = [0, 0, 0, 1] coffee
Continuous Bag of Wordsɿೖྗ-ӅΕͷॏΈ • ҹ1ͭʹରͯ͠ɼॏΈߦྻ • ͜ͷॏΈߦྻڞ༗ WN⇥V 2
4 1 2 3 0 1 2 1 2 1 1 1 1 3 5 2 6 6 4 0 1 0 0 3 7 7 5 = 2 4 2 2 1 3 5 Wx = ut 1
Continuous Bag of Wordsɿೖྗ-ӅΕͷॏΈ • ҹ1ͭʹରͯ͠ɼॏΈߦྻ • ͜ͷॏΈߦྻڞ༗ • ೖྗone–hotΑΓɼ୯ޠϕΫτϧ͕ӅΕʹ
WN⇥V 2 4 1 2 3 0 1 2 1 2 1 1 1 1 3 5 2 6 6 4 0 1 0 0 3 7 7 5 = 2 4 2 2 1 3 5 Wx = ut 1
Continuous Bag of WordsɿӅΕ • ୯ޠϕΫτϧͷฏۉ͕ӅΕͷೖྗʢN࣍ݩϕΫτϧʣ • ׆ੑԽؔͳ͠ ut 2
+ ut 1 + ut+1 3 = h 1 3 0 @ 2 4 1 1 1 3 5 + 2 4 2 2 1 3 5 + 2 4 0 2 1 3 5 1 A = 2 4 1 1.67 0.33 3 5
Continuous Bag of WordsɿӅΕ-ग़ྗ ॏΈߦྻ ͱӅΕͷग़ྗʢฏۉϕΫτϧʣͷੵ W0V ⇥N 2 6
6 4 1 2 1 1 2 1 1 2 2 0 2 0 3 7 7 5 2 4 1.00 1.67 0.33 3 5 = 2 6 6 4 4.01 2.01 5.00 3.34 3 7 7 5 W0h = u o
Continuous Bag of Wordsɿग़ྗ 1୯ޠͷ༧ଌΛ͍ͨ͠ • ग़ྗͷϢχοτ = ޠኮ =
V • ׆ੑԽؔɿsoftmaxؔ softmax (u o ) = y softmax 0 B B @ 2 6 6 4 4 . 01 2 . 01 5 . 00 3 . 34 3 7 7 5 1 C C A = 2 6 6 4 0 . 23 0 . 03 0 . 62 0 . 12 3 7 7 5
Continuous Bag of Wordsɿग़ྗ I, drink, everydayΛೖΕͯಘΒΕͨ୯ޠͷ֬ 2 6 6
4 0.23 0.03 0.62 0.12 3 7 7 5 coffeeͷ֬
ֶश݁Ռͷ୯ޠϕΫτϧ • ೖྗͱӅΕؒͷॏΈߦྻ͕୯ޠϕΫτϧͷू߹ • 1୯ޠɿ100࣍ݩͱ͔200࣍ݩͰີͳϕΫτϧ
୯ޠϕΫτϧͷخ͍͠ಛੑ • analogy • king-man+woman=queen • Japan-Tokyo+Paris=France • eats-eat+run=runs •
୯ޠͷಛྔ • ਂֶशͷॳظ • ྨࣅܭࢉ • nzwͷ࠷ॳͷจ͜Ε
ࢀߟจݙͳͲ • gensim : https://radimrehurek.com/gensim/ • pythonɼ͕͍ؔΖ͍Ζ͋ͬͯศར • chainer :
https://github.com/pfnet/chainer/tree/master/examples/word2vec • PythonɼχϡʔϥϧωοτͰͷ࣮ྫ • word2vec : https://code.google.com/archive/p/word2vec/ • CɼΦϦδφϧ • word2vec Parameter Learning Explained : http://arxiv.org/pdf/1411.2738v3.pdf • ӳޠɼΘ͔Γ͍͢ղઆ • Efficient Estimation of Word Representations in Vector Spaceɿhttp://arxiv.org/pdf/ 1301.3781.pdf • ӳޠɼCBoWͷͱจɽεϥΠυͷਤͷCBoWͪ͜Β͔Β • ਂֶश Deep Learning. ਓೳֶձ. • ຊޠɼॻ੶