Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-learn to solve machine learni...
Search
Olivier Grisel
April 22, 2015
Technology
0
1.1k
How to use scikit-learn to solve machine learning problems
AutoML Hackathon - Paris - April 2015
Olivier Grisel
April 22, 2015
Tweet
Share
More Decks by Olivier Grisel
See All by Olivier Grisel
Intro to scikit-learn
ogrisel
5
710
An Intro to Deep Learning
ogrisel
1
290
Predictive Modeling and Deep Learning
ogrisel
2
370
Intro to scikit-learn and what's new in 0.17
ogrisel
1
380
Big Data, Predictive Modeling and tools
ogrisel
2
290
Recent Developments in Deep Learning
ogrisel
3
700
Documentation
ogrisel
2
250
Build and test wheel packages on Linux, OSX and Windows
ogrisel
2
350
Big Data and Predictive Modeling
ogrisel
3
240
Other Decks in Technology
See All in Technology
ALB「証明書上限問題」からの脱却
nishiokashinji
0
160
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
400k
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
6.6k
困ったCSVファイルの話
mottyzzz
0
230
たかがボタン、されどボタン ~button要素から深ぼるボタンUIの定義について~ / BuriKaigi 2026
yamanoku
1
270
AI に「学ばせ、調べさせ、作らせる」。Auth0 開発を加速させる7つの実践的アプローチ
scova0731
0
280
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
11
5.3k
Digitization部 紹介資料
sansan33
PRO
1
6.5k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
技術選定、下から見るか?横から見るか?
masakiokuda
0
190
これまでのネットワーク運用を変えるかもしれないアプデをおさらい
hatahata021
2
150
スクラムを一度諦めたチームにアジャイルコーチが入ってどう変化したか / A Team's Second Try at Scrum with an Agile Coach
kaonavi
0
240
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Un-Boring Meetings
codingconduct
0
180
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
140
A designer walks into a library…
pauljervisheath
210
24k
From π to Pie charts
rasagy
0
110
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
170
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
380
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
100
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Transcript
How to use scikit-learn to solve machine learning problems AutoML
Hackathon April 2015
Outline • Machine Learning refresher • scikit-learn • Demo: interactive
predictive modeling on Census Data with IPython notebook / pandas / scikit-learn • Combining models with Pipeline and parameter search
Predictive modeling ~= machine learning • Make predictions of outcome
on new data • Extract the structure of historical data • Statistical tools to summarize the training data into a executable predictive model • Alternative to hard-coded rules written by experts
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train)
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train) Apartment 2 33 TRUE House 4 210 TRUE samples (test) ? ?
Training text docs images sounds transactions Labels Machine Learning Algorithm
Model Predictive Modeling Data Flow Feature vectors
New text doc image sound transaction Model Expected Label Predictive
Modeling Data Flow Feature vector Training text docs images sounds transactions Labels Machine Learning Algorithm Feature vectors
Inventory forecasting & trends detection Predictive modeling in the wild
Personalized radios Fraud detection Virality and readers engagement Predictive maintenance Personality matching
• Library of Machine Learning algorithms • Focus on established
methods (e.g. ESL-II) • Open Source (BSD) • Simple fit / predict / transform API • Python / NumPy / SciPy / Cython • Model Assessment, Selection & Ensembles
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
Support Vector Machine from sklearn.svm import SVC model = SVC(kernel="rbf",
C=1.0, gamma=1e-4) model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Linear Classifier from sklearn.linear_model import SGDClassifier model = SGDClassifier(alpha=1e-4, penalty="elasticnet")
model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Random Forests from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=200) model.fit(X_train,
y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
None
None
Demo time! http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/ master/sklearn_demos/Income%20classification.ipynb https://github.com/ogrisel/notebooks
Combining Models from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train)
Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA from
sklearn.svm import SVC from sklearn.pipeline import make_pipeline pipeline = make_pipeline( StandardScaler(), RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), ) pipeline.fit(X_train, y_train)
Scoring manually stacked models scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train)
pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train) X_test_scaled = scaler.transform(X_test) X_test_pca = pca.transform(X_test_scaled) y_pred = svm.predict(X_test_pca) accuracy_score(y_test, y_pred)
Scoring a pipeline pipeline = make_pipeline( RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), )
pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) accuracy_score(y_test, y_pred)
Parameter search import numpy as np from sklearn.grid_search import RandomizedSearchCV
params = { 'randomizedpca__n_components': [5, 10, 20], 'svc__C': np.logspace(-3, 3, 7), 'svc__gamma': np.logspace(-6, 0, 7), } search = RandomizedSearchCV(pipeline, params, n_iter=30, cv=5) search.fit(X_train, y_train) # search.best_params_, search.grid_scores_
Thank you! • http://scikit-learn.org • https://github.com/scikit-learn/scikit-learn @ogrisel