Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-learn to solve machine learni...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Olivier Grisel
April 22, 2015
Technology
0
1.1k
How to use scikit-learn to solve machine learning problems
AutoML Hackathon - Paris - April 2015
Olivier Grisel
April 22, 2015
Tweet
Share
More Decks by Olivier Grisel
See All by Olivier Grisel
Intro to scikit-learn
ogrisel
5
720
An Intro to Deep Learning
ogrisel
1
290
Predictive Modeling and Deep Learning
ogrisel
2
370
Intro to scikit-learn and what's new in 0.17
ogrisel
1
390
Big Data, Predictive Modeling and tools
ogrisel
2
300
Recent Developments in Deep Learning
ogrisel
3
700
Documentation
ogrisel
2
260
Build and test wheel packages on Linux, OSX and Windows
ogrisel
2
350
Big Data and Predictive Modeling
ogrisel
3
240
Other Decks in Technology
See All in Technology
Agile Leadership Summit Keynote 2026
m_seki
1
620
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
170
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
110
AI駆動開発を事業のコアに置く
tasukuonizawa
1
200
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
20260204_Midosuji_Tech
takuyay0ne
1
160
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
120
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
250
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
140
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
190
Featured
See All Featured
Mind Mapping
helmedeiros
PRO
0
87
The Limits of Empathy - UXLibs8
cassininazir
1
210
Building Applications with DynamoDB
mza
96
6.9k
Skip the Path - Find Your Career Trail
mkilby
0
56
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
How to Ace a Technical Interview
jacobian
281
24k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
82
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
GraphQLとの向き合い方2022年版
quramy
50
14k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
140
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
Transcript
How to use scikit-learn to solve machine learning problems AutoML
Hackathon April 2015
Outline • Machine Learning refresher • scikit-learn • Demo: interactive
predictive modeling on Census Data with IPython notebook / pandas / scikit-learn • Combining models with Pipeline and parameter search
Predictive modeling ~= machine learning • Make predictions of outcome
on new data • Extract the structure of historical data • Statistical tools to summarize the training data into a executable predictive model • Alternative to hard-coded rules written by experts
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train)
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train) Apartment 2 33 TRUE House 4 210 TRUE samples (test) ? ?
Training text docs images sounds transactions Labels Machine Learning Algorithm
Model Predictive Modeling Data Flow Feature vectors
New text doc image sound transaction Model Expected Label Predictive
Modeling Data Flow Feature vector Training text docs images sounds transactions Labels Machine Learning Algorithm Feature vectors
Inventory forecasting & trends detection Predictive modeling in the wild
Personalized radios Fraud detection Virality and readers engagement Predictive maintenance Personality matching
• Library of Machine Learning algorithms • Focus on established
methods (e.g. ESL-II) • Open Source (BSD) • Simple fit / predict / transform API • Python / NumPy / SciPy / Cython • Model Assessment, Selection & Ensembles
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
Support Vector Machine from sklearn.svm import SVC model = SVC(kernel="rbf",
C=1.0, gamma=1e-4) model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Linear Classifier from sklearn.linear_model import SGDClassifier model = SGDClassifier(alpha=1e-4, penalty="elasticnet")
model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Random Forests from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=200) model.fit(X_train,
y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
None
None
Demo time! http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/ master/sklearn_demos/Income%20classification.ipynb https://github.com/ogrisel/notebooks
Combining Models from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train)
Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA from
sklearn.svm import SVC from sklearn.pipeline import make_pipeline pipeline = make_pipeline( StandardScaler(), RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), ) pipeline.fit(X_train, y_train)
Scoring manually stacked models scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train)
pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train) X_test_scaled = scaler.transform(X_test) X_test_pca = pca.transform(X_test_scaled) y_pred = svm.predict(X_test_pca) accuracy_score(y_test, y_pred)
Scoring a pipeline pipeline = make_pipeline( RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), )
pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) accuracy_score(y_test, y_pred)
Parameter search import numpy as np from sklearn.grid_search import RandomizedSearchCV
params = { 'randomizedpca__n_components': [5, 10, 20], 'svc__C': np.logspace(-3, 3, 7), 'svc__gamma': np.logspace(-6, 0, 7), } search = RandomizedSearchCV(pipeline, params, n_iter=30, cv=5) search.fit(X_train, y_train) # search.best_params_, search.grid_scores_
Thank you! • http://scikit-learn.org • https://github.com/scikit-learn/scikit-learn @ogrisel