Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-learn to solve machine learni...
Search
Olivier Grisel
April 22, 2015
Technology
0
950
How to use scikit-learn to solve machine learning problems
AutoML Hackathon - Paris - April 2015
Olivier Grisel
April 22, 2015
Tweet
Share
More Decks by Olivier Grisel
See All by Olivier Grisel
Intro to scikit-learn
ogrisel
5
660
An Intro to Deep Learning
ogrisel
1
240
Predictive Modeling and Deep Learning
ogrisel
2
340
Intro to scikit-learn and what's new in 0.17
ogrisel
1
320
Big Data, Predictive Modeling and tools
ogrisel
2
250
Recent Developments in Deep Learning
ogrisel
3
660
Documentation
ogrisel
2
180
Build and test wheel packages on Linux, OSX and Windows
ogrisel
2
320
Big Data and Predictive Modeling
ogrisel
3
220
Other Decks in Technology
See All in Technology
AGIについてChatGPTに聞いてみた
blueb
0
130
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
100
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
0
980
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
4
530
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
190
Terraform CI/CD パイプラインにおける AWS CodeCommit の代替手段
hiyanger
1
240
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
470
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
3
180
Python(PYNQ)がテーマのAMD主催のFPGAコンテストに参加してきた
iotengineer22
0
470
社内で最大の技術的負債のリファクタリングに取り組んだお話し
kidooonn
1
550
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
150
Featured
See All Featured
Designing Experiences People Love
moore
138
23k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
How STYLIGHT went responsive
nonsquared
95
5.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
370
Building Your Own Lightsaber
phodgson
103
6.1k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Documentation Writing (for coders)
carmenintech
65
4.4k
Automating Front-end Workflow
addyosmani
1366
200k
Happy Clients
brianwarren
98
6.7k
Designing for Performance
lara
604
68k
Visualization
eitanlees
145
15k
Transcript
How to use scikit-learn to solve machine learning problems AutoML
Hackathon April 2015
Outline • Machine Learning refresher • scikit-learn • Demo: interactive
predictive modeling on Census Data with IPython notebook / pandas / scikit-learn • Combining models with Pipeline and parameter search
Predictive modeling ~= machine learning • Make predictions of outcome
on new data • Extract the structure of historical data • Statistical tools to summarize the training data into a executable predictive model • Alternative to hard-coded rules written by experts
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train)
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train) Apartment 2 33 TRUE House 4 210 TRUE samples (test) ? ?
Training text docs images sounds transactions Labels Machine Learning Algorithm
Model Predictive Modeling Data Flow Feature vectors
New text doc image sound transaction Model Expected Label Predictive
Modeling Data Flow Feature vector Training text docs images sounds transactions Labels Machine Learning Algorithm Feature vectors
Inventory forecasting & trends detection Predictive modeling in the wild
Personalized radios Fraud detection Virality and readers engagement Predictive maintenance Personality matching
• Library of Machine Learning algorithms • Focus on established
methods (e.g. ESL-II) • Open Source (BSD) • Simple fit / predict / transform API • Python / NumPy / SciPy / Cython • Model Assessment, Selection & Ensembles
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
Support Vector Machine from sklearn.svm import SVC model = SVC(kernel="rbf",
C=1.0, gamma=1e-4) model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Linear Classifier from sklearn.linear_model import SGDClassifier model = SGDClassifier(alpha=1e-4, penalty="elasticnet")
model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Random Forests from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=200) model.fit(X_train,
y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
None
None
Demo time! http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/ master/sklearn_demos/Income%20classification.ipynb https://github.com/ogrisel/notebooks
Combining Models from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train)
Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA from
sklearn.svm import SVC from sklearn.pipeline import make_pipeline pipeline = make_pipeline( StandardScaler(), RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), ) pipeline.fit(X_train, y_train)
Scoring manually stacked models scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train)
pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train) X_test_scaled = scaler.transform(X_test) X_test_pca = pca.transform(X_test_scaled) y_pred = svm.predict(X_test_pca) accuracy_score(y_test, y_pred)
Scoring a pipeline pipeline = make_pipeline( RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), )
pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) accuracy_score(y_test, y_pred)
Parameter search import numpy as np from sklearn.grid_search import RandomizedSearchCV
params = { 'randomizedpca__n_components': [5, 10, 20], 'svc__C': np.logspace(-3, 3, 7), 'svc__gamma': np.logspace(-6, 0, 7), } search = RandomizedSearchCV(pipeline, params, n_iter=30, cv=5) search.fit(X_train, y_train) # search.best_params_, search.grid_scores_
Thank you! • http://scikit-learn.org • https://github.com/scikit-learn/scikit-learn @ogrisel