Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-learn to solve machine learni...
Search
Olivier Grisel
April 22, 2015
Technology
0
990
How to use scikit-learn to solve machine learning problems
AutoML Hackathon - Paris - April 2015
Olivier Grisel
April 22, 2015
Tweet
Share
More Decks by Olivier Grisel
See All by Olivier Grisel
Intro to scikit-learn
ogrisel
5
670
An Intro to Deep Learning
ogrisel
1
240
Predictive Modeling and Deep Learning
ogrisel
2
340
Intro to scikit-learn and what's new in 0.17
ogrisel
1
330
Big Data, Predictive Modeling and tools
ogrisel
2
250
Recent Developments in Deep Learning
ogrisel
3
660
Documentation
ogrisel
2
200
Build and test wheel packages on Linux, OSX and Windows
ogrisel
2
320
Big Data and Predictive Modeling
ogrisel
3
220
Other Decks in Technology
See All in Technology
ディスプレイ広告(Yahoo!広告・LINE広告)におけるバックエンド開発
lycorptech_jp
PRO
0
500
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
14
5.3k
手を動かしてレベルアップしよう!
maruto
0
240
どちらかだけじゃもったいないかも? ECSとEKSを適材適所で併用するメリット、運用課題とそれらの対応について
tk3fftk
2
240
データモデルYANGの処理系を再発明した話
tjmtrhs
0
180
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
17
45k
開発者のための FinOps/FinOps for Engineers
oracle4engineer
PRO
2
210
EDRの検知の仕組みと検知回避について
chayakonanaika
12
5.2k
役員・マネージャー・著者・エンジニアそれぞれの立場から見たAWS認定資格
nrinetcom
PRO
4
6.5k
サバイバルモード下でのエンジニアリングマネジメント
konifar
7
1.6k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
19k
事業を差別化する技術を生み出す技術
pyama86
2
440
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
10
520
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Product Roadmaps are Hard
iamctodd
PRO
51
11k
Scaling GitHub
holman
459
140k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Designing for Performance
lara
605
68k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
A Tale of Four Properties
chriscoyier
158
23k
Automating Front-end Workflow
addyosmani
1369
200k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Transcript
How to use scikit-learn to solve machine learning problems AutoML
Hackathon April 2015
Outline • Machine Learning refresher • scikit-learn • Demo: interactive
predictive modeling on Census Data with IPython notebook / pandas / scikit-learn • Combining models with Pipeline and parameter search
Predictive modeling ~= machine learning • Make predictions of outcome
on new data • Extract the structure of historical data • Statistical tools to summarize the training data into a executable predictive model • Alternative to hard-coded rules written by experts
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train)
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train) Apartment 2 33 TRUE House 4 210 TRUE samples (test) ? ?
Training text docs images sounds transactions Labels Machine Learning Algorithm
Model Predictive Modeling Data Flow Feature vectors
New text doc image sound transaction Model Expected Label Predictive
Modeling Data Flow Feature vector Training text docs images sounds transactions Labels Machine Learning Algorithm Feature vectors
Inventory forecasting & trends detection Predictive modeling in the wild
Personalized radios Fraud detection Virality and readers engagement Predictive maintenance Personality matching
• Library of Machine Learning algorithms • Focus on established
methods (e.g. ESL-II) • Open Source (BSD) • Simple fit / predict / transform API • Python / NumPy / SciPy / Cython • Model Assessment, Selection & Ensembles
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
Support Vector Machine from sklearn.svm import SVC model = SVC(kernel="rbf",
C=1.0, gamma=1e-4) model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Linear Classifier from sklearn.linear_model import SGDClassifier model = SGDClassifier(alpha=1e-4, penalty="elasticnet")
model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Random Forests from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=200) model.fit(X_train,
y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
None
None
Demo time! http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/ master/sklearn_demos/Income%20classification.ipynb https://github.com/ogrisel/notebooks
Combining Models from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train)
Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA from
sklearn.svm import SVC from sklearn.pipeline import make_pipeline pipeline = make_pipeline( StandardScaler(), RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), ) pipeline.fit(X_train, y_train)
Scoring manually stacked models scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train)
pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train) X_test_scaled = scaler.transform(X_test) X_test_pca = pca.transform(X_test_scaled) y_pred = svm.predict(X_test_pca) accuracy_score(y_test, y_pred)
Scoring a pipeline pipeline = make_pipeline( RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), )
pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) accuracy_score(y_test, y_pred)
Parameter search import numpy as np from sklearn.grid_search import RandomizedSearchCV
params = { 'randomizedpca__n_components': [5, 10, 20], 'svc__C': np.logspace(-3, 3, 7), 'svc__gamma': np.logspace(-6, 0, 7), } search = RandomizedSearchCV(pipeline, params, n_iter=30, cv=5) search.fit(X_train, y_train) # search.best_params_, search.grid_scores_
Thank you! • http://scikit-learn.org • https://github.com/scikit-learn/scikit-learn @ogrisel