Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-learn to solve machine learni...
Search
Olivier Grisel
April 22, 2015
Technology
0
1.1k
How to use scikit-learn to solve machine learning problems
AutoML Hackathon - Paris - April 2015
Olivier Grisel
April 22, 2015
Tweet
Share
More Decks by Olivier Grisel
See All by Olivier Grisel
Intro to scikit-learn
ogrisel
5
720
An Intro to Deep Learning
ogrisel
1
290
Predictive Modeling and Deep Learning
ogrisel
2
370
Intro to scikit-learn and what's new in 0.17
ogrisel
1
390
Big Data, Predictive Modeling and tools
ogrisel
2
300
Recent Developments in Deep Learning
ogrisel
3
700
Documentation
ogrisel
2
260
Build and test wheel packages on Linux, OSX and Windows
ogrisel
2
350
Big Data and Predictive Modeling
ogrisel
3
240
Other Decks in Technology
See All in Technology
Greatest Disaster Hits in Web Performance
guaca
0
240
20260204_Midosuji_Tech
takuyay0ne
1
150
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
130
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
570
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
200
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
230
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
280
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.4k
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
今日から始めるAmazon Bedrock AgentCore
har1101
4
410
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
450
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
HDC tutorial
michielstock
1
380
How STYLIGHT went responsive
nonsquared
100
6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
We Have a Design System, Now What?
morganepeng
54
8k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
How to use scikit-learn to solve machine learning problems AutoML
Hackathon April 2015
Outline • Machine Learning refresher • scikit-learn • Demo: interactive
predictive modeling on Census Data with IPython notebook / pandas / scikit-learn • Combining models with Pipeline and parameter search
Predictive modeling ~= machine learning • Make predictions of outcome
on new data • Extract the structure of historical data • Statistical tools to summarize the training data into a executable predictive model • Alternative to hard-coded rules written by experts
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train)
type (category) # rooms (int) surface (float m2) public trans
(boolean) Apartment 3 50 TRUE House 5 254 FALSE Duplex 4 68 TRUE Apartment 2 32 TRUE sold (float k€) 450 430 712 234 features target samples (train) Apartment 2 33 TRUE House 4 210 TRUE samples (test) ? ?
Training text docs images sounds transactions Labels Machine Learning Algorithm
Model Predictive Modeling Data Flow Feature vectors
New text doc image sound transaction Model Expected Label Predictive
Modeling Data Flow Feature vector Training text docs images sounds transactions Labels Machine Learning Algorithm Feature vectors
Inventory forecasting & trends detection Predictive modeling in the wild
Personalized radios Fraud detection Virality and readers engagement Predictive maintenance Personality matching
• Library of Machine Learning algorithms • Focus on established
methods (e.g. ESL-II) • Open Source (BSD) • Simple fit / predict / transform API • Python / NumPy / SciPy / Cython • Model Assessment, Selection & Ensembles
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test)
Train data Train labels Model Fitted model Test data Predicted
labels Test labels Evaluation model = ModelClass(**hyperparams) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy_score(y_test, y_pred)
Support Vector Machine from sklearn.svm import SVC model = SVC(kernel="rbf",
C=1.0, gamma=1e-4) model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Linear Classifier from sklearn.linear_model import SGDClassifier model = SGDClassifier(alpha=1e-4, penalty="elasticnet")
model.fit(X_train, y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
Random Forests from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=200) model.fit(X_train,
y_train) y_predicted = model.predict(X_test) from sklearn.metrics import f1_score f1_score(y_test, y_predicted)
None
None
Demo time! http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/ master/sklearn_demos/Income%20classification.ipynb https://github.com/ogrisel/notebooks
Combining Models from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA
from sklearn.svm import SVC scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train)
Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import RandomizedPCA from
sklearn.svm import SVC from sklearn.pipeline import make_pipeline pipeline = make_pipeline( StandardScaler(), RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), ) pipeline.fit(X_train, y_train)
Scoring manually stacked models scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train)
pca = RandomizedPCA(n_components=10) X_train_pca = pca.fit_transform(X_train_scaled) svm = SVC(C=0.1, gamma=1e-3) svm.fit(X_train_pca, y_train) X_test_scaled = scaler.transform(X_test) X_test_pca = pca.transform(X_test_scaled) y_pred = svm.predict(X_test_pca) accuracy_score(y_test, y_pred)
Scoring a pipeline pipeline = make_pipeline( RandomizedPCA(n_components=10), SVC(C=0.1, gamma=1e-3), )
pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) accuracy_score(y_test, y_pred)
Parameter search import numpy as np from sklearn.grid_search import RandomizedSearchCV
params = { 'randomizedpca__n_components': [5, 10, 20], 'svc__C': np.logspace(-3, 3, 7), 'svc__gamma': np.logspace(-6, 0, 7), } search = RandomizedSearchCV(pipeline, params, n_iter=30, cv=5) search.fit(X_train, y_train) # search.best_params_, search.grid_scores_
Thank you! • http://scikit-learn.org • https://github.com/scikit-learn/scikit-learn @ogrisel