Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Дмитрий Пагин, Fast cars detecti...
Search
OpenTalks.AI
February 21, 2020
Science
0
2.1k
OpenTalks.AI - Дмитрий Пагин, Fast cars detection and traffic estimation
OpenTalks.AI
February 21, 2020
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
490
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
430
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
370
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
510
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
150
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
370
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
340
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
430
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
470
Other Decks in Science
See All in Science
Transport information Geometry: Current and Future II
lwc2017
0
210
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
160
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
260
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
400
2025-06-11-ai_belgium
sofievl
1
170
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
820
My Little Monster
juzishuu
0
120
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
200
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
860
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
980
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
130
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Facilitating Awesome Meetings
lara
56
6.6k
Bash Introduction
62gerente
615
210k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Building Adaptive Systems
keathley
43
2.8k
Git: the NoSQL Database
bkeepers
PRO
431
66k
A better future with KSS
kneath
239
18k
Embracing the Ebb and Flow
colly
88
4.8k
What's in a price? How to price your products and services
michaelherold
246
12k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
Fast cars detection and traffic estimation Dmitriy Pagin, ML and
CV developer
Task Road traffic analysis in Russia is manual. It takes
more than 8 hours for 15 minutes video today
Task • detect cars
Task • detect cars • track cars
Baseline - people tracking
Problems Cars: - faster (2 metres per frame!) - smaller
(10 px in minimal dimension) + more predictable movement
YOLOv2 - blinking - problems on small cars - problems
on edges
YOLOv2 1 fps
YOLOv3 - bigger + accurate on small + fullHD frame
+ robust
YOLOv3 7 fps
> 70k cars on 4k images Dataset
better than 1024x1024x1 Learning and Fine-tuning - 608x608 px -
batchSize = 3 - custom augmenters
None
Learning and Fine-tuning - 608x608 px - batchSize = 3
- custom augmenters - Radam optimizer (instead warmup + reduce LR) - Hard negative mining for trucks
Learning and Fine-tuning - 608x608 px - batchSize = 3
- custom augmenters - Radam optimizer (instead warmup + reduce LR) - Hard negative mining for trucks mAP75 = 0.96
Baseline Inference Speed 7 fps
Weights Pruning
Weights Pruning -25% convs = size: 240 mb mAp: 0.9656
inf: 150 ms size: 155 mb mAp: 0.9622 inf: 100 ms 10 fps
OpticalFlow step or classical cv is alive ! - find
good features to track - calculate sparse optical flow
OpticalFlow step 19 fps Calculation doesnt work for 3 consistent
frames
Speed extrapolation step - estimate speed as pixels/frame - extrapolate
next position 28 fps
Final pipeline 1 2 3 4 5 6 Update trajectories
4 5 6 step 1 step 2 Speed Extrapolation OpticalFlow YOLOv3 Detection Engine
1 fps -> 28 fps on FULLHD
Tracking - IoU - Color descriptor (it’s enough!)
Bridges! - Allowed zone by motion vector - Size overlap
- Color descriptor
Bridges! - Allowed zone by motion vector - Size overlap
- Color descriptor
Thanks! Questions?
[email protected]
+7 952 335 65 70
Appendix. Examples
Appendix. Examples
Appendix. Examples
Appendix. Yolov3
Weights Pruning Шаг mAP75 Число параметров, млн Размер сети, мб
От изначальной, % Время прогона, мс Условие обрезания 0 0.965 60 241 100 150 - 1 0.962 55 218 91 140 5% от всех 2 0.962 50 197 83 132 5% от всех 3 0.963 39 155 64 112 15% для слоев с 400+ сверток 4 0.955 31 124 51 100 10% для слоев с 100+ сверток
Appendix. Radam
Pruning convs
Pruning convs. Good choice 2000
Pruning convs. Bad choice 25
Pruning flat