Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Дмитрий Пагин, Fast cars detecti...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
OpenTalks.AI
February 21, 2020
Science
0
2.1k
OpenTalks.AI - Дмитрий Пагин, Fast cars detection and traffic estimation
OpenTalks.AI
February 21, 2020
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
490
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
430
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
370
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
520
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
150
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
390
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
340
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
440
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
480
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
220
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
My Little Monster
juzishuu
0
530
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
620
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
870
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
150
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
Featured
See All Featured
Odyssey Design
rkendrick25
PRO
1
480
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
69
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Claude Code のすすめ
schroneko
67
210k
Designing Powerful Visuals for Engaging Learning
tmiket
0
210
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
My Coaching Mixtape
mlcsv
0
43
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
2.9k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
150
Transcript
Fast cars detection and traffic estimation Dmitriy Pagin, ML and
CV developer
Task Road traffic analysis in Russia is manual. It takes
more than 8 hours for 15 minutes video today
Task • detect cars
Task • detect cars • track cars
Baseline - people tracking
Problems Cars: - faster (2 metres per frame!) - smaller
(10 px in minimal dimension) + more predictable movement
YOLOv2 - blinking - problems on small cars - problems
on edges
YOLOv2 1 fps
YOLOv3 - bigger + accurate on small + fullHD frame
+ robust
YOLOv3 7 fps
> 70k cars on 4k images Dataset
better than 1024x1024x1 Learning and Fine-tuning - 608x608 px -
batchSize = 3 - custom augmenters
None
Learning and Fine-tuning - 608x608 px - batchSize = 3
- custom augmenters - Radam optimizer (instead warmup + reduce LR) - Hard negative mining for trucks
Learning and Fine-tuning - 608x608 px - batchSize = 3
- custom augmenters - Radam optimizer (instead warmup + reduce LR) - Hard negative mining for trucks mAP75 = 0.96
Baseline Inference Speed 7 fps
Weights Pruning
Weights Pruning -25% convs = size: 240 mb mAp: 0.9656
inf: 150 ms size: 155 mb mAp: 0.9622 inf: 100 ms 10 fps
OpticalFlow step or classical cv is alive ! - find
good features to track - calculate sparse optical flow
OpticalFlow step 19 fps Calculation doesnt work for 3 consistent
frames
Speed extrapolation step - estimate speed as pixels/frame - extrapolate
next position 28 fps
Final pipeline 1 2 3 4 5 6 Update trajectories
4 5 6 step 1 step 2 Speed Extrapolation OpticalFlow YOLOv3 Detection Engine
1 fps -> 28 fps on FULLHD
Tracking - IoU - Color descriptor (it’s enough!)
Bridges! - Allowed zone by motion vector - Size overlap
- Color descriptor
Bridges! - Allowed zone by motion vector - Size overlap
- Color descriptor
Thanks! Questions?
[email protected]
+7 952 335 65 70
Appendix. Examples
Appendix. Examples
Appendix. Examples
Appendix. Yolov3
Weights Pruning Шаг mAP75 Число параметров, млн Размер сети, мб
От изначальной, % Время прогона, мс Условие обрезания 0 0.965 60 241 100 150 - 1 0.962 55 218 91 140 5% от всех 2 0.962 50 197 83 132 5% от всех 3 0.963 39 155 64 112 15% для слоев с 400+ сверток 4 0.955 31 124 51 100 10% для слоев с 100+ сверток
Appendix. Radam
Pruning convs
Pruning convs. Good choice 2000
Pruning convs. Bad choice 25
Pruning flat