Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Дмитрий Пагин, Fast cars detecti...
Search
OpenTalks.AI
February 21, 2020
Science
0
2.1k
OpenTalks.AI - Дмитрий Пагин, Fast cars detection and traffic estimation
OpenTalks.AI
February 21, 2020
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
480
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
430
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
370
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
500
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
140
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
370
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
330
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
430
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
460
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
1k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
320
機械学習 - pandas入門
trycycle
PRO
0
310
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
260
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
🌏地球から🌌宇宙まで! 〜ケプラーの法則で繋がる天体の運動〜
syotasasaki593876
1
100
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
560
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
120
データマイニング - ノードの中心性
trycycle
PRO
0
270
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
140
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
960
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Into the Great Unknown - MozCon
thekraken
40
2k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Building an army of robots
kneath
306
46k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
Practical Orchestrator
shlominoach
190
11k
Building Adaptive Systems
keathley
43
2.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
GitHub's CSS Performance
jonrohan
1032
460k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
Fast cars detection and traffic estimation Dmitriy Pagin, ML and
CV developer
Task Road traffic analysis in Russia is manual. It takes
more than 8 hours for 15 minutes video today
Task • detect cars
Task • detect cars • track cars
Baseline - people tracking
Problems Cars: - faster (2 metres per frame!) - smaller
(10 px in minimal dimension) + more predictable movement
YOLOv2 - blinking - problems on small cars - problems
on edges
YOLOv2 1 fps
YOLOv3 - bigger + accurate on small + fullHD frame
+ robust
YOLOv3 7 fps
> 70k cars on 4k images Dataset
better than 1024x1024x1 Learning and Fine-tuning - 608x608 px -
batchSize = 3 - custom augmenters
None
Learning and Fine-tuning - 608x608 px - batchSize = 3
- custom augmenters - Radam optimizer (instead warmup + reduce LR) - Hard negative mining for trucks
Learning and Fine-tuning - 608x608 px - batchSize = 3
- custom augmenters - Radam optimizer (instead warmup + reduce LR) - Hard negative mining for trucks mAP75 = 0.96
Baseline Inference Speed 7 fps
Weights Pruning
Weights Pruning -25% convs = size: 240 mb mAp: 0.9656
inf: 150 ms size: 155 mb mAp: 0.9622 inf: 100 ms 10 fps
OpticalFlow step or classical cv is alive ! - find
good features to track - calculate sparse optical flow
OpticalFlow step 19 fps Calculation doesnt work for 3 consistent
frames
Speed extrapolation step - estimate speed as pixels/frame - extrapolate
next position 28 fps
Final pipeline 1 2 3 4 5 6 Update trajectories
4 5 6 step 1 step 2 Speed Extrapolation OpticalFlow YOLOv3 Detection Engine
1 fps -> 28 fps on FULLHD
Tracking - IoU - Color descriptor (it’s enough!)
Bridges! - Allowed zone by motion vector - Size overlap
- Color descriptor
Bridges! - Allowed zone by motion vector - Size overlap
- Color descriptor
Thanks! Questions?
[email protected]
+7 952 335 65 70
Appendix. Examples
Appendix. Examples
Appendix. Examples
Appendix. Yolov3
Weights Pruning Шаг mAP75 Число параметров, млн Размер сети, мб
От изначальной, % Время прогона, мс Условие обрезания 0 0.965 60 241 100 150 - 1 0.962 55 218 91 140 5% от всех 2 0.962 50 197 83 132 5% от всех 3 0.963 39 155 64 112 15% для слоев с 400+ сверток 4 0.955 31 124 51 100 10% для слоев с 100+ сверток
Appendix. Radam
Pruning convs
Pruning convs. Good choice 2000
Pruning convs. Bad choice 25
Pruning flat