Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
異常検知の最新事情と給与の話
Search
palloc
January 20, 2019
Technology
4
4.6k
異常検知の最新事情と給与の話
palloc
January 20, 2019
Tweet
Share
More Decks by palloc
See All by palloc
スタートアップでAIを使うときの壁
palloc
0
1.5k
Crypto講義資料
palloc
2
14k
Other Decks in Technology
See All in Technology
Microsoft Agent Frameworkの可観測性
tomokusaba
1
110
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
180
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
170
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
370
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
130
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
160
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
250
特別捜査官等研修会
nomizone
0
570
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1k
AI with TiDD
shiraji
1
290
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
6
3.6k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
How to train your dragon (web standard)
notwaldorf
97
6.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Automating Front-end Workflow
addyosmani
1371
200k
Code Reviewing Like a Champion
maltzj
527
40k
From π to Pie charts
rasagy
0
91
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Navigating Team Friction
lara
191
16k
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
250
Transcript
Deepな異常検知の最新事情 伊東 道明
© 2018- ChillStack, Inc. 自己紹介 ◆ 所属 ◇ 法政大学 彌冨研究室
M1 ◇ クマ財団 2期生 ◇ (株)ChillStack 代表取締役 ◆ 好きなこと ◇ AIセキュリティ ◇ 100m
雑談
© 2018- ChillStack, Inc. 【雑談】経営者 vs エンジニア ◆ マウント合戦がアツく、何かと話題になる「年収」 ◆
エンジニアはよく薄給な会社と戦ってるイメージ イメージ) 年収400万しかもらってな いのおかしい!! 優秀なエンジニア 無能な経営陣 400万もあげれば十分だろ。 「ヤリガイ」を与えてるんだから!
© 2018- ChillStack, Inc. 【雑談】経営者視点での思考 初任給から年収5,000万円を定年退職までもらえたら、 エンジニアは最高効率で働いてくれる?
© 2018- ChillStack, Inc. 【雑談】労働の要因 ◆ 内発的動機づけ ◇ 達成感 ◇
仕事自体の楽しさ ◇ 自己の承認 ◆ 衛生要因 ◇ 給与 ◇ 職場の人間関係 ◇ 場所・機材などの環境 満足の原因 不満足の予防 詳細が気になる方は、以下のワードで検索してみてください ・デシ 心理学 実験 ・X理論 Y理論 ・ヴィクター ヴルーム 期待理論
© 2018- ChillStack, Inc. 【雑談】労働の要因 ◆ 内発的動機づけ ◇ 達成感 ◇
仕事自体の楽しさ ◇ 自己の承認 ◆ 衛生要因 ◇ 給与 ◇ 職場の人間関係 ◇ 場所・機材などの環境 満足の原因 不満足の予防 ブラックな上司や企業は大抵 片方しかみていない 詳細が気になる方は、以下のワードで検索してみてください ・デシ 心理学 実験 ・X理論 Y理論 ・ヴィクター ヴルーム 期待理論
って感じの内容を考えるのが 今の仕事の一つです
経営とか気になる方は是非懇親会で…
Deepな異常検知の最新事情 本題
© 2018- ChillStack, Inc. 異常検知手法 ◆ ホテリング法 ◆ ナイーブベイズ法 ◆
近傍法 ◆ OC-SVM ◆ 密度比推定 ◆ などなど k-meansとspectral clusteringを 使った異常検知の解説
© 2018- ChillStack, Inc. ディープな異常検知 ◆ CNN系を用いた2値分類による異常検知 ◇ 前回はこっち ◇
Web Application Firewall using Character-level Convolutional Neural Network ◆ GAN系を用いた異常検知 ◇ 今回はこっち
© 2018- ChillStack, Inc. GANとは ◆ 生成モデルの1種(Generative Adversarial Network) G
G(z) z x 潜在空間 観測空間 D 結果
© 2018- ChillStack, Inc. GANとは G G(z) z x 潜在空間
観測空間 D 結果 データを生成する種 (潜在変数) データ 生成器 生成データ 元データ 生成データ or 元データ か識別する識別器 GはDを騙せるように学習、 Dはちゃんと見分けられるように学習する
© 2018- ChillStack, Inc. GANの近年の成果 ◆ 人にサングラスをかけさせたり ◆ 馬をシマウマにしたり ◆
低画質な画像を超高画質にしたり ◆ めっちゃ高く売れる絵を描いちゃったり 他にも色々面白い成果を出している
© 2018- ChillStack, Inc. 【GANで異常検知】基本アイディア G G(z) z x 潜在空間
データ D 結 果 ◆ G は学習データの分布 p に従って画像を生成するモデル ◆ p に従ってサンプルしたx → G(z)≈x となる z が潜在空間に存在する ◆ p 内で低い確率 or 別の分布からサンプルしたx → 潜在空間に z が存在しない
© 2018- ChillStack, Inc. 【GANで異常検知】基本アイディア G G(z) z x 潜在空間
データ D 結 果 ◆ G(z)≈x となる z が存在しない時、x は異常 ◆ 存在しない is ? → G(z) と x がどれだけ離れているかを表す異常スコアが 閾値以上かどうかで判定
© 2018- ChillStack, Inc. AnoGAN ◆ GANで異常検知する手法 ◆ 基本的にさっきのアイディアを実用化した感じ ◆
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, IPMI 2017 ◆ https://arxiv.org/abs/1703.05921
© 2018- ChillStack, Inc. AnoGAN 1. 普通にGANを学習させる 2. 異常か知りたいデータ x
に一番似ている G(z) を作る z を探す 3. 異常スコアを LR と LD から計算する 4. 異常スコアが閾値を超えてたら異常 ※1 通称minmaxゲームってやつ ※1 ※2 ※2
© 2018- ChillStack, Inc. AnoGAN 1. 普通にGANを学習させる 2. 異常か知りたいデータ x
に一番似ている G(z) を作る z を探す 3. 異常スコアを LR と LD から計算する 4. 異常スコアが閾値を超えてたら異常 ※1 通称minmaxゲームってやつ ※1 ※2 ※2
© 2018- ChillStack, Inc. G(z) ≈ x となる z の探索
1. 初期値 z0 を決める 2. g(zn ) というモデル(論文内では確かfc)を作る 3. G(g(z0 )) と x の loss から g(zn ) の重みを更新 4. z1 ← g(z0 ) 5. 収束するまで 3, 4 を繰り返す G G(z) z x D 結 果 g
© 2018- ChillStack, Inc. G(z) ≈ x となる z の探索
1. 初期値 z0 を決める 2. g(zn ) というモデル(論文内では確かfc)を作る 3. G(g(z0 )) と x の loss から g(zn ) の重みを更新 4. z1 ← g(z0 ) 5. 収束するまで 3, 4 を繰り返す G G(z) z x D 結 果 g めっちゃ時間 かかる!
© 2018- ChillStack, Inc. Efficient GAN ◆ Bidirectional GAN のアイディアを利用し、
z の探索コストをほぼ無くした手法 ◆ Efficient GAN-Based Anomaly Detection ICLR worpshop 2018 ◆ https://arxiv.org/abs/1802.06222
© 2018- ChillStack, Inc. Efficient GAN ◆ 学習時に Encoder も一緒に学習する
G G(z) z x D 結果 E E(x) G(z), z x, E(x)
© 2018- ChillStack, Inc. Efficient GAN ◆ 潜在空間、観測空間それぞれで loss を計算
G G(z) z x D 結果 E E(x) G(z), z x, E(x)
© 2018- ChillStack, Inc. 何が嬉しいか ◆ Encoder を使う事で z を探索する必要がなくなる
◆ 速い G G(z) z x D 結果 E E(x) G(z), z x, E(x)
© 2018- ChillStack, Inc. 他にもいろいろ ◆ Adversarially Learned One-Class Classifier
for Novelty Detection ◇ オートエンコーダ使ったいい感じのやつ ◆ Anomaly Detection with Generative Adversarial Networks ◇ ADGANってやつ ◆ Anomaly detection with Wasserstein GAN ◇ WGAN使ってるやつ
© 2018- ChillStack, Inc. 株式会社ChillStack ◆ 異常検知プラットフォーム Stena を開発・提供 ◇
ゲームの悪質ユーザとかを検知 ◇ ログデータ解析からサービスの品質改良・自動化を支援 ◆ 不正ユーザに悩んでいる方 ◇ 低コスト高精度なシステムを提供します。ご相談ください! ◆ ログデータはあるが、有効活用するコストが割けない方 ◇ 有効活用できるシステムを共同研究・開発します。ご相談ください!