Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Brightest Cluster Galaxies as seen by Integral-Field Spectroscopy

Brightest Cluster Galaxies as seen by Integral-Field Spectroscopy

Summary of 2015 papers, stellar populations and stellar kinematics of BCGs

Paola Oliva-Altamirano

September 21, 2015
Tweet

More Decks by Paola Oliva-Altamirano

Other Decks in Science

Transcript

  1. BRIGHTEST CLUSTER GALAXIES AS SEEN BY INTEGRAL-FIELD SPECTROSCOPY This is

    NOT my current work Disclaim er Paola Oliva-Altamirano, Swinburne University
  2. • Sarah Brough, AAO • Warrick Couch, AAO • Kim-Vy

    Tran, Texas A&M • Jimmy, Texas A&M IN COLLABORATION WITH • Chris Lidman, AAO • Richard McDermid, AAO • Chris Miller, University of Michigan • Rob Sharp, ANU
  3. OUTLINE • Brief description of Brightest Cluster Galaxies (BCG) Evolution

    • Why is integral-field spectroscopy important to study these galaxies? C4 2055
  4. OUTLINE • Brief description of Brightest Cluster Galaxies (BCG) Evolution

    • Why is integral-field spectroscopy important to study these galaxies? • Stellar Kinematics and Stellar populations of BCGs C4 2055
  5. BCG FORMATION HYPOTHESIS From Cool Cores Cowie & Binney 1977

    ∆CDM mergers Tonry 1985, Yamada +2002, Jordan +2004 Two phases scenario Oser +2010
  6. BCG EVOLUTION • BCGs are expected to be at the

    end of the hierarchical evolution Lacey & Cole 1993
  7. BCG EVOLUTION • BCGs are expected to be at the

    end of the hierarchical evolution Lacey & Cole 1993
  8. MERGERS ARE IMPORTANT IN BCG EVOLUTION Summary of the Current

    Picture: At high redshifts (z>0.8) BCGs grow by Major Mergers Rapidly Burke & Collins 2013, Lidman +2013 At low redshifts (z>0.3) BCGs grow by Minor Mergers Slowly Edwards & Patton 2012, Oliva-Altamirano +2014 Observations of Lin +2013 Semi-Analytical model Guo +2011
  9. MERGERS ARE IMPORTANT IN BCG EVOLUTION Summary of the Current

    Picture: At high redshifts (z>0.8) BCGs grow by Major Mergers Rapidly Burke & Collins 2013, Lidman +2013 At low redshifts (z>0.3) BCGs grow by Minor Mergers Slowly Edwards & Patton 2012, Oliva-Altamirano +2014 Observations of Lin +2013 Semi-Analytical model Guo +2011
  10. KINEMATICS IN A NUTSHELL… Rotating Galaxies 2.0 1.0 0.0 v

    z Dispersion Dominated Galaxies Proxy for Angular momentum
  11. KINEMATICS IN A NUTSHELL… Rotating Galaxies 2.0 1.0 0.0 v

    z Dispersion Dominated Galaxies Ellipticity Proxy for Angular momentum
  12. KINEMATICS IN A NUTSHELL… Rotating Galaxies 2.0 1.0 0.0 v

    z Dispersion Dominated Galaxies Ellipticity Fast Rotators Proxy for Angular momentum
  13. KINEMATICS IN A NUTSHELL… Rotating Galaxies 2.0 1.0 0.0 v

    z Dispersion Dominated Galaxies Ellipticity Fast Rotators Slow Rotator Proxy for Angular momentum
  14. USING KINEMATICS TO TRACE MERGERS HYDRODYNAMICAL MODELS Gas Rich Major

    Mergers Create disks and show rotation Dry Major Merger Create dispersion supported galaxies Bournaud +2005 Boylan-Kolchin +2006, Naab & Burkert 2003, Bois +2011
  15. Naab +2014 2.0 1.0 0.0 v σ z FR with

    gas rich minor mergers SR with gas rich major mergers SR with gas poor minor mergers Major merger
  16. Naab +2014 2.0 1.0 0.0 v σ z FR with

    gas rich minor mergers SR with gas rich major mergers SR with gas poor minor mergers Major merger
  17. BCGS ARE PREDICTED TO BE SLOW ROTATORS This cannot be

    proven by SAURON, ATLAS3D, or CALIFA because their samples cover small volumes. These surveys have only include one BCG, M87
  18. BCGS ARE PREDICTED TO BE SLOW ROTATORS This cannot be

    proven by SAURON, ATLAS3D, or CALIFA because their samples cover small volumes. These surveys have only include one BCG, M87
  19. OTHER INDIVIDUAL STUDIES SUGGEST NO TREND IN THE STELLAR KINEMATICS…

    BCGs in the Coma Cluster Houghton +2013 M87 slow rotator with a kinematically decoupled core Emsellem +2014
  20. DEDICATED IFS OBSERVATIONS OF BCGS BROUGH +2011, JIMMY +2013, OLIVA-ALTAMIRANO

    +2014, OLIVA-ALTAMIRANO +SUBMITTED 10 BCGs, 7 of them with close massive companions. Selected from the SDSS C4 catalogue (von der Linden +2007). Observed with VIMOS on the VLT
  21. JIMMY +2013 found slow and fast rotators within the 10

    BCGs… Brough +2011, Jimmy +2013
  22. JIMMY +2013 found slow and fast rotators within the 10

    BCGs… Brough +2011, Jimmy +2013
  23. Mixed Merger History Fast Rotator Slow Rotator Merging Not Merging

    However the Merging BCGs in this sample are going through MINOR mergers. Next question: Is the fast rotation an indication of future MAJOR mergers?
  24. NEW OBSERVATIONS 12 BCGS SELECTED FROM GAMA AND THE SDSS

    C4 CATALOGUE OBSERVED WITH SPIRAL ON THE AAT OLIVA-ALTAMIRANO +SUBMITTED
  25. NEW OBSERVATIONS 12 BCGS SELECTED FROM GAMA AND THE SDSS

    C4 CATALOGUE OBSERVED WITH SPIRAL ON THE AAT These galaxies + other observations in the literature cover a wider range in stellar masses: 10<log(M/Mo)<11.8 and host halo cluster masses: 12<log(M/Mo)<15.5 OLIVA-ALTAMIRANO +SUBMITTED
  26. 29 BCGS, ~40% OF THE GALAXIES ARE FAST ROTATORS New

    observations Jimmy +2013 Other galaxies in the literature: Coma, Virgo, Fornax, Abell 1689, 85, 168 and 2399 Cappellari 2013b, Emsellem et al. 2014, Scott et al. 2014, Houghton et al. 2013, D'Eugenio et al. 2012 and Fogarty et al. 2014 Oliva-Altamirano +submitted Proxy for Angular momentum 0.6
  27. BCG rotation vrs Stellar Mass Stellar Mass log(M/Mo): FR: 11.03

    +/- 0.08 SR: 11.32 +/-0.07 No FR after 11.5 Angular Momentum Stellar Mass
  28. BCG rotation vrs Halo Mass Angular Momentum Cluster Malo Mass

    Cluster halo Mass log(M/Mo): FR: 14.2 +/- 0.14 SR: 14.63 +/- 0.18 No FR after 15
  29. STELLAR MASS - CLUSTER HALO MASS RELATIONSHIP Stellar Mass Cluster

    Malo Mass Bigger Galaxies live in Bigger Clusters
  30. BGCs evolve from fast-rotating group galaxies to slow-rotating cluster galaxies

    STELLAR MASS - CLUSTER HALO MASS - ANGULAR MOMENTUM RELATIONSHIP?
  31. CLUSTER DOMINANCE Tremaine & Richstone 1977; Loh & Strauss 2006;

    Smith et al. 2010; Dariush et al. 2010; Coenda et al. 2012; Martel et al. 2014
  32. CLUSTER DOMINANCE Dominance = Mag 1 - Mag 2 Tremaine

    & Richstone 1977; Loh & Strauss 2006; Smith et al. 2010; Dariush et al. 2010; Coenda et al. 2012; Martel et al. 2014
  33. CLUSTER DOMINANCE Dominance = Mag 1 - Mag 2 Dominance

    < 1: Could indicate that the host halo has recently gone through a cluster-cluster merger Tremaine & Richstone 1977; Loh & Strauss 2006; Smith et al. 2010; Dariush et al. 2010; Coenda et al. 2012; Martel et al. 2014
  34. CLUSTER DOMINANCE Dominance = Mag 1 - Mag 2 Dominance

    < 1: Could indicate that the host halo has recently gone through a cluster-cluster merger Dominance > 3: Could indicate that the host cluster has not gone through recent mergers Tremaine & Richstone 1977; Loh & Strauss 2006; Smith et al. 2010; Dariush et al. 2010; Coenda et al. 2012; Martel et al. 2014
  35. BCG rotation vrs Cluster Dominance % of cluster mass residing

    in cluster substructure Smith +2010 Angular Momentum Cluster Dominance Dominance: FR: 0.81+/-0.14 SR: 1.54 +/-0.13 No FR after 1.5
  36. BCG rotation vrs Cluster Dominance % of cluster mass residing

    in cluster substructure Smith +2010 Angular Momentum Cluster Dominance Dominance: FR: 0.81+/-0.14 SR: 1.54 +/-0.13 No FR after 1.5
  37. BCG rotation vrs Cluster Dominance % of cluster mass residing

    in cluster substructure Smith +2010 Angular Momentum Cluster Dominance Dominance: FR: 0.81+/-0.14 SR: 1.54 +/-0.13 No FR after 1.5
  38. BCG rotation vrs Cluster Dominance % of cluster mass residing

    in cluster substructure Smith +2010 Angular Momentum Cluster Dominance Dominance: FR: 0.81+/-0.14 SR: 1.54 +/-0.13 No FR after 1.5
  39. • RECENT MINOR mergers do not change the angular momentum

    of BCGs (Jimmy +2013) • There is a connection between the stellar mass - cluster halo mass relationship and the BCG rotation (Oliva-Altamirano +submitted) • Cluster - cluster mergers can affect the BCG rotation (Oliva-Altamirano +submitted) SUMMARY:
  40. • RECENT MINOR mergers do not change the angular momentum

    of BCGs (Jimmy +2013) • There is a connection between the stellar mass - cluster halo mass relationship and the BCG rotation (Oliva-Altamirano +submitted) • Cluster - cluster mergers can affect the BCG rotation (Oliva-Altamirano +submitted) SUMMARY:
  41. • RECENT MINOR mergers do not change the angular momentum

    of BCGs (Jimmy +2013) • There is a connection between the stellar mass - cluster halo mass relationship and the BCG rotation (Oliva-Altamirano +submitted) • Cluster - cluster mergers can affect the BCG rotation (Oliva-Altamirano +submitted) stellar mass halo mass Angular momentum SUMMARY:
  42. • RECENT MINOR mergers do not change the angular momentum

    of BCGs (Jimmy +2013) • There is a connection between the stellar mass - cluster halo mass relationship and the BCG rotation (Oliva-Altamirano +submitted) • Cluster - cluster mergers can affect the BCG rotation (Oliva-Altamirano +submitted) stellar mass halo mass Angular momentum SUMMARY: Dominance = Mag 1 - Mag
  43. 5" The"galaxy"is" divided"into"annuli" that"follow"flux"" The"result:"one" spectrum"per" annulus"" Method'' Age"and"metallicity"per" spectrum"as"a"func<on"of"

    radius" " Full"spectrum"fi?ng"STECKMAP" Models:"Vazdekis"et."al."2010" Library:"MILES"SánchezQBlázquez"et."al."2006"
  44. ACCRETION HISTORIES FROM STELLAR POPULATION GRADIENTS R Met Met R

    Cosmological simulations of Kobayashi +2004, Hirshmann +2014
  45. ACCRETION HISTORIES FROM STELLAR POPULATION GRADIENTS R Met Met R

    Steep Met gradients >0.4: Could be due to core collapsed formation or major mergers involving high fractions of gas. Cosmological simulations of Kobayashi +2004, Hirshmann +2014
  46. ACCRETION HISTORIES FROM STELLAR POPULATION GRADIENTS R Met Met R

    Steep Met gradients >0.4: Could be due to core collapsed formation or major mergers involving high fractions of gas. Shallow Met gradients >0.3: Are the result of major dissipationless mergers. Cosmological simulations of Kobayashi +2004, Hirshmann +2014
  47. BCG STELLAR POPULATION GRADIENTS (SAME GALAXIES FROM JIMMY +2013) BCGs,

    ΔFe/H = -0.11+/-0.1 E-T, ΔZ/H = -0.19+/-0.1 Oliva-Altamirano +2015 Metallicity Dynamical Mass
  48. BCG STELLAR POPULATION GRADIENTS (SAME GALAXIES FROM JIMMY +2013) Gradient

    = 0.3 BCGs, ΔFe/H = -0.11+/-0.1 E-T, ΔZ/H = -0.19+/-0.1 Oliva-Altamirano +2015 Metallicity Dynamical Mass
  49. BCG STELLAR POPULATION GRADIENTS (SAME GALAXIES FROM JIMMY +2013) Gradient

    = 0.3 BCGs, ΔFe/H = -0.11+/-0.1 E-T, ΔZ/H = -0.19+/-0.1 Oliva-Altamirano +2015 Metallicity Dynamical Mass
  50. BCG STELLAR POPULATION GRADIENTS (SAME GALAXIES FROM JIMMY +2013) Gradient

    = 0.3 BCGs, ΔFe/H = -0.11+/-0.1 E-T, ΔZ/H = -0.19+/-0.1 The BCG stellar population gradients are shallow and similar to those of early-type galaxies Oliva-Altamirano +2015 Metallicity Dynamical Mass
  51. PREVIOUS RESULTS Loubser +2012, ∆Z/H = -0.28±0.06 Brough +2007, ∆Z/H

    = -0.31±0.05 Long-slit spectroscopy Loubser +2012 Metallicity
  52. NEW RESULTS The BCG stellar population gradients are still shallow

    out to ~3 Re Green +2015 IFS spectroscopy from the MASSIVE survey Ma +2014
  53. NEW RESULTS The BCG stellar population gradients are still shallow

    out to ~3 Re Green +2015 IFS spectroscopy from the MASSIVE survey Ma +2014 us
  54. NEW RESULTS The BCG stellar population gradients are still shallow

    out to ~3 Re Green +2015 IFS spectroscopy from the MASSIVE survey Ma +2014 us
  55. BCG CENTRAL STELLAR POPULATIONS (SAME GALAXIES FROM JIMMY +2013) Oliva-Altamirano

    +2015 BCGs, age = 8.9+/-3.1 E-T, age = 12.0 +/-3.8 Metallicity Dynamical Mass
  56. BCG CENTRAL STELLAR POPULATIONS (SAME GALAXIES FROM JIMMY +2013) Oliva-Altamirano

    +2015 BCGs, age = 8.9+/-3.1 E-T, age = 12.0 +/-3.8 Metallicity Dynamical Mass
  57. BCG CENTRAL STELLAR POPULATIONS (SAME GALAXIES FROM JIMMY +2013) The

    BCG central stellar populations are similar to those of early-type galaxies, with a wider range in ages Oliva-Altamirano +2015 BCGs, age = 8.9+/-3.1 E-T, age = 12.0 +/-3.8 Metallicity Dynamical Mass
  58. PREVIOUS RESULTS 1.9 Log σ 2.5 1.1 Log Age 0.5

    1.9 Log σ 2.5 0.02 [Fe/H] -0.14 Fitzpatrick +2012, Stacked SDSS galaxies BCGs show: slightly younger ages, slightly higher metallicities
  59. PREVIOUS RESULTS Loubser +2009, Long-slit spectroscopy BCGs have: wide range

    of ages, slightly higher metallicities Log Age young old [Z/H]
  60. • BCGs have similar high metallicities: similar to early-type galaxies

    • BCGs have a wide range of ages: some similar to early-types other younger • BCGs have shallow stellar population gradients, even at large radii (Green +2015) SUMMARY: Oliva-Altamirano +2015
  61. FUTURE PROJECTS Combined observations from the and KOALA (IFS on

    the AAT) Same projects larger samples (Sarah Brough with SAMI)
  62. FUTURE PROJECTS Combined observations from the and KOALA (IFS on

    the AAT) Same projects larger samples (Sarah Brough with SAMI) Does the angular momentum of the BCG correlate with the Angular momentum of its host cluster? (P. Oliva-Altamirano)
  63. FUTURE PROJECTS Combined observations from the and KOALA (IFS on

    the AAT) Same projects larger samples (Sarah Brough with SAMI) Does the angular momentum of the BCG correlate with the Angular momentum of its host cluster? (P. Oliva-Altamirano) What is the star formation history of these galaxies? When do they quench?(P. Oliva-Altamirano)