Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
行動ログでプロダクトを改善するには/exploit user behavior for pro...
Search
genta kaneyama
January 21, 2017
Programming
4
9.3k
行動ログでプロダクトを改善するには/exploit user behavior for product
https://techconf.cookpad.com/2017/
youtube
https://www.youtube.com/watch?v=45i0oG6dsws
genta kaneyama
January 21, 2017
Tweet
Share
More Decks by genta kaneyama
See All by genta kaneyama
MOSHでの生成AI活用の取り組み
penguinco
0
200
search and community in cookpad 2019
penguinco
2
2k
Solr @ CROSS2015 C4
penguinco
1
1.4k
how to improve search
penguinco
8
2k
solrとelasticsearchの比較
penguinco
15
5.6k
Other Decks in Programming
See All in Programming
開発に寄りそう自動テストの実現
goyoki
2
1.6k
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
120
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
680
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
200
Implementation Patterns
denyspoltorak
0
140
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
170
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
240
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
280
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
170
Navigating Dependency Injection with Metro
l2hyunwoo
1
200
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
140
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.5k
Featured
See All Featured
The untapped power of vector embeddings
frankvandijk
1
1.5k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Darren the Foodie - Storyboard
khoart
PRO
0
2k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Paper Plane (Part 1)
katiecoart
PRO
0
2.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
KATA
mclloyd
PRO
33
15k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
Transcript
ߦಈϩάͰϓϩμΫτ Λվળ͢Δʹ αʔϏε։ൃ෦71 4FBSDI ݉ࢁݩଠ IUUQTUFDIDPOGDPPLQBEDPN
ΞδΣϯμ w ߦಈϩάΛ௨ͯ͡ڀۃతʹΓ͍ͨ͜ͱԿ͔ w ߦಈϩάΛ׆༻͢Δྫ w σʔλͰຒ·Βͳ͍෦ʹ͍ͭͯ
ΫοΫύουͱ w ଟ͘ͷਓʹΞΠσΞΛڞ༗͢Δॴ w ୭͔ͷΞΠσΞΛ௨ͯ͡ຖͷྉཧΛָ͘͢͠Δॴ
Ϩγϐݕࡧ w ΫοΫύουͰϢʔβʔͷऔΓ͏Δཱ w ͷͤΔਓ w ͩΕ͔ͷྉཧΛָ͘͢͠Δ͜ͱ͕Ͱ͖Δਓ w ͕͢͞ਓ w
͖ΐ͏ྉཧΛ͢Δ͔͠Εͳ͍ਓ w ͦΕΛϨγϐͰͭͳ͍Ͱ͍Δ
Ϩγϐݕࡧ w ຊɿඦສਓ w ͦͷଞͷࠃɿຊͷͷҰ
σʔλͷ୲͑Δׂ w ͷͤΔ࣌ʹɺ w ΞΠσΞΛଟ͘ͷਓʹΒͤΔ/Pͷπʔϧʹɻ w ͕࣌͢͞ʹɺ w ͕ࣗࢥ͍ͬͯͨҎ্ͷൃݟΛɻ
ࣄྫ w Ϟχλʔ͢Δɿ w ηογϣϯͷධՁʢݕࡧޭʣ w ར༻࣮ଶͷ؍ʢϚΠϑΥϧμʣ w Τϯύϫʔ͢Δɿ w
ؔ࿈Ωʔϫʔυɺؔ࿈Ϩγϐ
ݕࡧޭʢຬͷఆྔԽʣ w ྑ͍γφϦΦɾѱ͍γφϦΦΛఆٛ w ߦಈϩάΛηογϣϯԽ্ͯ͑͛͠ w Ωʔϫʔυ͝ͱʹूܭ
VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU
VTFS" FWFOU VTFS" FWFOU VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU MPH TPSUFECZUJNF VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU VTFS" FWFOU VTFS" FWFOU VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU MPH TPSUFECZVTFS UJNF ηογϣϯԽ
ηογϣϯԽ
VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU VTFS" FWFOU VTFS" FWFOU VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU MPH TPSUFECZVTFS UJNF VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU VTFS" FWFOU VTFS" FWFOU VTFS" FWFOU VTFS# FWFOU VTFS# FWFOU ˢˣ͕࣌ؒΕ͍ͯΔ NJO ˢˣผͷϢʔβʔ
ؔ࿈ݕࡧ
ؔ࿈ݕࡧ ͏·͘ߦͬͯͳ͍෦Λ ߦಈϩάͰຒΊΔ
ؔ࿈ݕࡧ ʮ͓ன͝ΜΛ࡞ͬͯ͋͛ ͍͕ͨԿʹ͠Α͏͔ʜʯ ʢ͍Ζ͍ΖϨγϐΛݟΔʣ ʮ͙͢Ͱ͖Δϥϯνͱʁʯ
ؔ࿈ݕࡧ ʢ͍Ζ͍ΖϨγϐΛݟΔʣ ʮ൴ࢯ͓ன͝൧ɺͳΔ΄Ͳ ͜͏ݕࡧ͢Ε͍͍ͷ͔ͳʯ
ؔ࿈ݕࡧ ʮλίϥΠε؆୯ʯΑ͍ͷ Ͱ
ؔ࿈ݕࡧ ʮ͜Εʹ͠Α͏ʂʯ
͍ͬͯΔϩά w ݕࡧηογϣϯςʔϒϧ w ηογϣϯεςʔλεʢޭࣦഊFUDʜʣ w VOJRVF@JE w ࣌ࠁ w
ΠϕϯτʢݕࡧɺϨγϐӾཡFUDʣ w ύϥϝʔλʢݕࡧޠɺϨγϐ*%FUDʣ
None
None
ఆ൪ఏҊ ɾϝχϡʔޠͷมભ ɾݟ͔ͭΔϨγϐλΠτϧ ͳͲΛूܭͯ͠ఆ൪ΛఏҊ
ఆ൪ఏҊ ɾϝχϡʔޠͷมભ ɾݟ͔ͭΔϨγϐλΠτϧ ͳͲΛूܭͯ͠ఆ൪ΛఏҊ
ఆ൪ఏҊ ɾϝχϡʔޠͷมભ ɾݟ͔ͭΔϨγϐλΠτϧ ͳͲΛूܭͯ͠ఆ൪ΛఏҊ
σʔλͰຒ·Βͳ͍෦ w ར༻ऀʢͷϩάʣαʔϏεʹ࠷దԽ͞Ε͍ͯΔ w ΫΤϦ͕ΩϨΠͳͷظ͕͍ͱߟ͑ΒΕΔ w ղܾ๏Λಋ͍ͯ͘ΕΔࣄ΄ͱΜͲͳ͍
σʔλͰຒ·Βͳ͍෦ w ར༻ऀʢͷϩάʣαʔϏεʹ࠷దԽ͞Ε͍ͯΔ w ΫΤϦ͕ΩϨΠͳͷظ͕͍ͱߟ͑ΒΕΔ w ղܾ๏Λಋ͍ͯ͘ΕΔࣄ΄ͱΜͲͳ͍
ར༻࣮ଶͷੳ w ϒοΫϚʔΫͷϑΥϧμ͚࣮ࡍʹʁ
ར༻࣮ଶͷੳ w ϒοΫϚʔΫͷϑΥϧμ͚࣮ࡍʹʁ w ʮɾڕɾࡊʯͱಉʹʮڇɾಲɾܲʯɻ
ར༻࣮ଶͷੳ w ϒοΫϚʔΫͷϑΥϧμ͚࣮ࡍʹʁ w ʮɾڕɾࡊʯͱಉʹʮڇɾಲɾܲʯɻ w ͦΕΛ͑ͯʜҐ͕ʮεʔϓαϥμύελʯʜʁʁ
ར༻࣮ଶͷੳ w ϒοΫϚʔΫͷϑΥϧμ͚࣮ࡍʹʁ w ʮɾڕɾࡊʯͱಉʹʮڇɾಲɾܲʯɻ w ϓϨʔεϗϧμͰͨ͠ʜ
σʔλͰຒ·Βͳ͍෦ w ར༻ऀʢͷϩάʣαʔϏεʹ࠷దԽ͞Ε͍ͯΔ w ΫΤϦ͕ΩϨΠͳͷظ͕͍ͱߟ͑ΒΕΔ w ղܾ๏Λಋ͍ͯ͘ΕΔࣄ΄ͱΜͲͳ͍
5JQT w ϑΟʔυόοΫ͕͔͔Γ͗͢ͳ͍Α͏ʹ͢Δ w ϩάͷظؒ༗ݶʹ w ࣮ଌظͰׂΓҾ͘ w %8) w
Օॴ͕ศར w ͭͷํ๏Ͱશ෦ͷϦιʔεʹಉ࣌ΞΫηεͰ͖Δ w 42-Λษڧ͢Δ
ࢦ͢͜ͱ w Ұ൪ศརͳͷ͚͕ͩ܁Γฦ͠ΘΕΔͳΒɺ w ࣾͷࣝͷ૯ʹ੍͞Εͳ͍Α͏ʹ͠Α͏ w ར༻ऀʹࣗવͱߩݙͯ͠Β͏͜ͱͰɺ ࣍͏࣌ͷ΄͏͕ศརʹͳ͍ͬͯΔΑ͏ʹ͠Α͏