Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Classification
Search
peroon
April 09, 2017
Technology
1
80
Food Image Classification
mxnet, Keras, resnet, resnext, ensemble learning
peroon
April 09, 2017
Tweet
Share
More Decks by peroon
See All by peroon
筋肉 2015
peroon
0
66
富士登山の知見
peroon
0
44
CEDEC2014フィードバック
peroon
0
51
働く理由
peroon
1
210
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
使いにくいの壁を突破する
sansantech
PRO
1
130
Meshy Proプラン課金した
henjin0
0
250
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
20260204_Midosuji_Tech
takuyay0ne
1
140
あたらしい上流工程の形。 0日導入からはじめるAI駆動PM
kumaiu
5
760
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
42k
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
73k
Context Engineeringの取り組み
nutslove
0
300
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Practical Orchestrator
shlominoach
191
11k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
64
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
ਓೳٕज़ઓུձٞओ࠵ AIνϟϨϯδίϯςετʢୈ1ճʣ (2)ྉཧྨ෦ɹϨϙʔτ ʮਂֶशΛ༻͍ͨը૾ྨʹ͓͚Δ Best Practiceʯ peroon 1
ɾσʔλͷ؍ ɾσʔλͷར༻ํ๏ ɾԾઆ ɾϞσϦϯάͷ ɾ༧ଌ݁Ռ͔ΒಘΒΕΔࣔࠦ ࣍ 2
bread_sandwich, bread_sliced, bread_sweets, bread_table, noodle_somen, noodle_udon, pasta_cream, pasta_gratin, pasta_japanese, pasta_oil,
pasta_tomato, rice_boiled, rice_bowl, rice_curry, rice_fried, rice_risotto, rice_sushi, soup_miso, soup_potage, sweets_cheese, sweets_cookie, sweets_muffin, sweets_pie, sweets_pound, sweets_pudding σʔλͷ؍ʢϥϕϧҰཡʣ 3 ࣅ͍ͯΔάϧʔϓάϧʔϓԽͯ͠ྨ ͨ͠ํ͕͍͍ͷ͔ͳʁetc
σʔλͷ؍ʢը૾ʣ 4 ثྖҬΛݕग़ͯ͠ɺͦͷத͚ͩΛֶशɾྨͨ͠ํ͕͍͍ͷ͔ͳʁ ը૾ՃʹΑΔςΩετจࣈݕग़Ͱআڈͨ͠ํ͕͍͍ͷ͔ͳʁetc
ࠓճͷσʔλʹಛԽͨ͠ϧʔϧ ࡞Γ͍Ζ͍Ζߟ͑ΒΕΔ͕ɺ ͦΕΑΓɺCNNΛ༻͍ͨը૾ ྨͷBest PracticeΛద༻ͯ͠ੑ ೳΛ࠷େʹҾ͖ग़͢͜ͱ͕ॏཁ Ծઆ 5
ɾԣͷը૾ʢαΠζ w x hʣͷ߹ɺw x wͷਖ਼ํܗ ը૾Λɺࠨɺதԝɺӈ͔ΒΓऔΔ ʢྉཧ͕ࠨӈʹدͬͯө͍ͬͯΔͷ͕͋ΔͨΊʣ ɾԣํʹॖখͯ͠w x
wʹ͢Δ ʢใྔ͕Ұ൪ΔͨΊʣ ɾ্هʹΑΓɺ1ຕͷը૾͕4ຕʹͳΔ ɾॎͷ߹ɺΓऔΓ্ɺதԝɺԼ ɾ܇࿅ը૾ɺςετը૾ɺڞʹߦ͏ σʔλͷར༻ํ๏ʢϥϕϧ͋Γը૾ʣ 6
༻͠ͳ͔ͬͨ ɾը૾Λ؍ͨ͠ͱ͜Ζɺ25Ϋϥεͱແؔͷը ૾ؚ·Ε͍ͯΔͨΊ ɾϥϕϧ͋Γը૾ͰCNNΛֶशޙɺϥϕϧͳ͠ը૾ Λྨͯ͠ԾͷϥϕϧΛ͚ͯ࠶ֶश(Pseudo Labeling)ͨ͠ͱ͜Ζɺvalidation accuracy্͕Δ ͕ɺtest accuracyมԽ͕ͳ͔ͬͨͨΊ σʔλͷར༻ํ๏ʢϥϕϧͳ͠ը૾ʣ
7
ɾimagenetͰֶशࡁΈͷϞσϧͷfine-tuning ɾfine tuning࣌ͷfreezeͤ͞Δͷਂ͞ͷௐ ʢϋΠύʔύϥϝʔλͷRandom SearchͱCross ValidationͰܾఆʣ ɾvgg16, resnetͳͲҟͳΔϞσϧͷΞϯαϯϒϧֶश ɾը૾ͷcropping ɾ్தͷepoch͔Βlearning
rateΛ0.1ഒʹ͢Δ ɾFCʹDropoutΛೖΕΔ ɾ֤Ϟσϧ܇࿅σʔλͷ4/5ͷΈͰֶश͠ɺͦΕΛ5ͭ࡞Δ ɾը૾ͷલॲཧʢϞσϧ͝ͱʹܾ·͍ͬͯΔRGBฏۉΛҾ͘ʣ ɾ֤Ϟσϧ͕ϥϕϧΛ֬Ͱ༧ଌͨ͠ͷΛ߹ܭͯ͠࠷ऴ༧ଌ ɾ༧ଌ࣌ʹ୯ମͰ༏लͳϞσϧ(resnext)ͷॏΈΛ্͛Δ ɾ࠷ऴతʹɺresnext (101)Λ5Ϟσϧ࡞ͬͯΞϯαϯϒϧ ϞσϦϯάͷʢ্ख͍ͬͨ͘ͷʣ 8
ɾBatch Normalization ɾڧ͍Data Augmentation ɾֶश͕ઙ͍(epoch͕গͳ͍)CNNΛΞϯαϯϒϧʹؚΊΔ ɾNearest NeighbourΛΞϯαϯϒϧʹؚΊΔ ɾFCʹSVM ɾϥϕϧͳ͠ը૾ͷPseudo Labeling
ɾྉཧͷثݕग़ʢϋϑมʹΑΔପԁݕग़ʣ ϞσϦϯάͷʢޮՌ͕ͳ͔ͬͨͷʣ 9
ɾثೝࣝͳͲࢥ͍͖ͭͷख๏ਫ਼্ʹد༩͠ͳ͔ͬͨҰ ํɺը૾ೝࣝͷจͰΘΕ͍ͯΔख๏Λਖ਼͘͠͏͜ͱͰ ண࣮ʹਫ਼্͕͠ɺϥϯΩϯάͰͷ࠷ߴਫ਼ʹ͍ۙ0.82Ҏ ্ͷείΞ͕ୡͰ͖ͨɻԾઆͷ௨ΓɺBest Practice͕ޮ͘ͱ ͍͏͜ͱ͕ࣔࠦ͞ΕΔɻ ɾϏδωεͳͲͷ࣮Ԡ༻ʹ͓͍ͯɺ·ͣCNNͷੑೳΛे ʹҾ͖ग़͠ɺͦͷޙʹ͝ͱͷϧʔϧΛՃ͍͑ͯ͘ͱ͍͏ ॱংͰਐΊΔ͜ͱ͕ɺண࣮ʹඪͱ͢Δਫ਼ʹۙͮͨ͘Ίͷ खஈͱͯ͠ਖ਼͍͜͠ͱ͕ࣔࠦ͞ΕΔɻ
༧ଌ݁Ռ͔ΒಘΒΕΔࣔࠦ 10