Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Food Image Classification
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
peroon
April 09, 2017
Technology
1
80
Food Image Classification
mxnet, Keras, resnet, resnext, ensemble learning
peroon
April 09, 2017
Tweet
Share
More Decks by peroon
See All by peroon
筋肉 2015
peroon
0
66
富士登山の知見
peroon
0
44
CEDEC2014フィードバック
peroon
0
51
働く理由
peroon
1
210
Other Decks in Technology
See All in Technology
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
560
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.6k
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
110
データの整合性を保ちたいだけなんだ
shoheimitani
8
3k
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
1
350
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
160
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
130
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
140
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
4.9k
Featured
See All Featured
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.9k
Visualization
eitanlees
150
17k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
79
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
83
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Automating Front-end Workflow
addyosmani
1371
200k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Designing for Performance
lara
610
70k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Darren the Foodie - Storyboard
khoart
PRO
2
2.3k
Odyssey Design
rkendrick25
PRO
1
490
Mind Mapping
helmedeiros
PRO
0
78
Transcript
ਓೳٕज़ઓུձٞओ࠵ AIνϟϨϯδίϯςετʢୈ1ճʣ (2)ྉཧྨ෦ɹϨϙʔτ ʮਂֶशΛ༻͍ͨը૾ྨʹ͓͚Δ Best Practiceʯ peroon 1
ɾσʔλͷ؍ ɾσʔλͷར༻ํ๏ ɾԾઆ ɾϞσϦϯάͷ ɾ༧ଌ݁Ռ͔ΒಘΒΕΔࣔࠦ ࣍ 2
bread_sandwich, bread_sliced, bread_sweets, bread_table, noodle_somen, noodle_udon, pasta_cream, pasta_gratin, pasta_japanese, pasta_oil,
pasta_tomato, rice_boiled, rice_bowl, rice_curry, rice_fried, rice_risotto, rice_sushi, soup_miso, soup_potage, sweets_cheese, sweets_cookie, sweets_muffin, sweets_pie, sweets_pound, sweets_pudding σʔλͷ؍ʢϥϕϧҰཡʣ 3 ࣅ͍ͯΔάϧʔϓάϧʔϓԽͯ͠ྨ ͨ͠ํ͕͍͍ͷ͔ͳʁetc
σʔλͷ؍ʢը૾ʣ 4 ثྖҬΛݕग़ͯ͠ɺͦͷத͚ͩΛֶशɾྨͨ͠ํ͕͍͍ͷ͔ͳʁ ը૾ՃʹΑΔςΩετจࣈݕग़Ͱআڈͨ͠ํ͕͍͍ͷ͔ͳʁetc
ࠓճͷσʔλʹಛԽͨ͠ϧʔϧ ࡞Γ͍Ζ͍Ζߟ͑ΒΕΔ͕ɺ ͦΕΑΓɺCNNΛ༻͍ͨը૾ ྨͷBest PracticeΛద༻ͯ͠ੑ ೳΛ࠷େʹҾ͖ग़͢͜ͱ͕ॏཁ Ծઆ 5
ɾԣͷը૾ʢαΠζ w x hʣͷ߹ɺw x wͷਖ਼ํܗ ը૾Λɺࠨɺதԝɺӈ͔ΒΓऔΔ ʢྉཧ͕ࠨӈʹدͬͯө͍ͬͯΔͷ͕͋ΔͨΊʣ ɾԣํʹॖখͯ͠w x
wʹ͢Δ ʢใྔ͕Ұ൪ΔͨΊʣ ɾ্هʹΑΓɺ1ຕͷը૾͕4ຕʹͳΔ ɾॎͷ߹ɺΓऔΓ্ɺதԝɺԼ ɾ܇࿅ը૾ɺςετը૾ɺڞʹߦ͏ σʔλͷར༻ํ๏ʢϥϕϧ͋Γը૾ʣ 6
༻͠ͳ͔ͬͨ ɾը૾Λ؍ͨ͠ͱ͜Ζɺ25Ϋϥεͱແؔͷը ૾ؚ·Ε͍ͯΔͨΊ ɾϥϕϧ͋Γը૾ͰCNNΛֶशޙɺϥϕϧͳ͠ը૾ Λྨͯ͠ԾͷϥϕϧΛ͚ͯ࠶ֶश(Pseudo Labeling)ͨ͠ͱ͜Ζɺvalidation accuracy্͕Δ ͕ɺtest accuracyมԽ͕ͳ͔ͬͨͨΊ σʔλͷར༻ํ๏ʢϥϕϧͳ͠ը૾ʣ
7
ɾimagenetͰֶशࡁΈͷϞσϧͷfine-tuning ɾfine tuning࣌ͷfreezeͤ͞Δͷਂ͞ͷௐ ʢϋΠύʔύϥϝʔλͷRandom SearchͱCross ValidationͰܾఆʣ ɾvgg16, resnetͳͲҟͳΔϞσϧͷΞϯαϯϒϧֶश ɾը૾ͷcropping ɾ్தͷepoch͔Βlearning
rateΛ0.1ഒʹ͢Δ ɾFCʹDropoutΛೖΕΔ ɾ֤Ϟσϧ܇࿅σʔλͷ4/5ͷΈͰֶश͠ɺͦΕΛ5ͭ࡞Δ ɾը૾ͷલॲཧʢϞσϧ͝ͱʹܾ·͍ͬͯΔRGBฏۉΛҾ͘ʣ ɾ֤Ϟσϧ͕ϥϕϧΛ֬Ͱ༧ଌͨ͠ͷΛ߹ܭͯ͠࠷ऴ༧ଌ ɾ༧ଌ࣌ʹ୯ମͰ༏लͳϞσϧ(resnext)ͷॏΈΛ্͛Δ ɾ࠷ऴతʹɺresnext (101)Λ5Ϟσϧ࡞ͬͯΞϯαϯϒϧ ϞσϦϯάͷʢ্ख͍ͬͨ͘ͷʣ 8
ɾBatch Normalization ɾڧ͍Data Augmentation ɾֶश͕ઙ͍(epoch͕গͳ͍)CNNΛΞϯαϯϒϧʹؚΊΔ ɾNearest NeighbourΛΞϯαϯϒϧʹؚΊΔ ɾFCʹSVM ɾϥϕϧͳ͠ը૾ͷPseudo Labeling
ɾྉཧͷثݕग़ʢϋϑมʹΑΔପԁݕग़ʣ ϞσϦϯάͷʢޮՌ͕ͳ͔ͬͨͷʣ 9
ɾثೝࣝͳͲࢥ͍͖ͭͷख๏ਫ਼্ʹد༩͠ͳ͔ͬͨҰ ํɺը૾ೝࣝͷจͰΘΕ͍ͯΔख๏Λਖ਼͘͠͏͜ͱͰ ண࣮ʹਫ਼্͕͠ɺϥϯΩϯάͰͷ࠷ߴਫ਼ʹ͍ۙ0.82Ҏ ্ͷείΞ͕ୡͰ͖ͨɻԾઆͷ௨ΓɺBest Practice͕ޮ͘ͱ ͍͏͜ͱ͕ࣔࠦ͞ΕΔɻ ɾϏδωεͳͲͷ࣮Ԡ༻ʹ͓͍ͯɺ·ͣCNNͷੑೳΛे ʹҾ͖ग़͠ɺͦͷޙʹ͝ͱͷϧʔϧΛՃ͍͑ͯ͘ͱ͍͏ ॱংͰਐΊΔ͜ͱ͕ɺண࣮ʹඪͱ͢Δਫ਼ʹۙͮͨ͘Ίͷ खஈͱͯ͠ਖ਼͍͜͠ͱ͕ࣔࠦ͞ΕΔɻ
༧ଌ݁Ռ͔ΒಘΒΕΔࣔࠦ 10