Upgrade to Pro — share decks privately, control downloads, hide ads and more …

bioRad: biological analysis and visualization o...

Peter Desmet
September 22, 2019

bioRad: biological analysis and visualization of weather radar data

Talk at the 2nd International Radar Aeroecology Conference in Zhengzhou, China - September 22, 2019.

Weather surveillance radars are increasingly used for monitoring the movements and abundances of animals in the airspace. However, analysis of weather radar data remains a specialised task that can be technically challenging. Major hurdles are the difficulty of accessing and visualising radar data on a software platform familiar to ecologists and biologists, processing the low‐level data into products that are biologically meaningful, and summarizing these results in standardized measures. To overcome these hurdles, we developed the open source R package bioRad (described in Dokter et al. 2019, https://doi.org/10.1111/ecog.04028), which provides a toolbox for accessing, visualizing and analyzing weather radar data for biological studies. In this talk we will cover how bioRad provides functionality to access low‐level radar data, process these data into meaningful biological information on animal speeds and directions at different altitudes in the atmosphere, visualize these biological extractions, and calculate further summary statistics. We will also describe how the package introduces weather radar equivalents for familiar measures used in the field of migration ecology, facilitates the use and spread of interoperable data standards, and integrates with a research infrastructure for weather radar aeroecology in Europe and the United States.

Peter Desmet

September 22, 2019
Tweet

More Decks by Peter Desmet

Other Decks in Science

Transcript

  1. Hi!

  2. Bird migration on weather radars •  Reflectivity factor: how many

    animals? •  Radial velocity: where are they going?
  3. How to •  Read and inspect weather radar data • 

    Extract biological information: vertical profiling •  Analyze and integrate vertical profile data •  Standardize measures to compare studies
  4. bioRad •  R package for analysis and visualization of biological

    signals in weather radar data •  Open source •  Available on CRAN and GitHub adokter.github.io/bioRad
  5. Authors Adriaan Dokter* Peter Desmet* Jurriaan Spaaks Stijn Van Hoey

    Lourens Veen Liesbeth Verlinden Cecilia Nilsson* Günther Haase Hidde Leijnse Andrew Farnsworth* Willem Bouten Judy Shamoun-Baranes*
  6. pvol scan param: VRADH radial velocity param: DBZH reflectivity factor

    Read polar volume data pvol <- read_pvolfile("KBRO20170514_055831_pvol.h5") radar file
  7. pvol scan param: VRADH radial velocity param: DBZH reflectivity factor

    scan param: VRADH radial velocity param: DBZH reflectivity factor Read polar volume data pvol <- read_pvolfile("KBRO20170514_055831_pvol.h5") radar file
  8. pvol scan param: VRADH radial velocity param: DBZH reflectivity factor

    scan param: VRADH radial velocity param: DBZH reflectivity factor Read polar volume data pvol <- read_pvolfile("KBRO20170514_055831_pvol.h5") scan param: VRADH radial velocity param: DBZH reflectivity factor radar file
  9. Inspect scan scan <- get_scan(pvol, 1.5) # use get_elevation_angles(pvol) to

    know angles pvol scan param: VRADH radial velocity param: DBZH reflectivity factor scan param: VRADH radial velocity param: DBZH reflectivity factor scan param: VRADH radial velocity param: DBZH reflectivity factor
  10. Inspect scan scan <- get_scan(pvol, 1.5) # use get_elevation_angles(pvol) to

    know angles pvol scan param: VRADH radial velocity param: DBZH reflectivity factor
  11. Plot scan plot(scan, 
 param = "DBZH") pvol scan param:

    VRADH radial velocity param: DBZH reflectivity factor
  12. x y Project scan ppi <- project_as_ppi(scan, range_max = 120000)


    # ppi: plan position indicator pvol scan param: VRADH radial velocity param: DBZH reflectivity factor
  13. Project scan plot(ppi, 
 param = "DBZH") pvol scan param:

    VRADH radial velocity param: DBZH reflectivity factor
  14. Project scan plot(ppi, 
 param = "VRADH") pvol scan param:

    VRADH radial velocity param: DBZH reflectivity factor
  15. Vertical profiling calculate_vp(
 pvolfile = "KBRO20170514_055831_pvol.h5", 
 vpfile = "KBRO20170514_055831_vp.h5"


    ) # Makes use of vol2bird algorithm radar file vp: vertical profile Vertical profile (class vp) radar: KBRO source: RAD:KBRO,PLC:BROWNSVILLE,state:TX nominal time: 2017-05-14 05:58:32 generated by: vol2bird 0.3.18
  16. Time series of vertical profiles vpts <- bind_into_vpts(vp, vp, vp)

    # read file with: read_vpts("vpts_file.txt") # regularize with: regularize_vpts() vp: vertical profile
  17. Time series of vertical profiles vpts <- bind_into_vpts(vp, vp, vp)

    # read file with: read_vpts("vpts_file.txt") # regularize with: regularize_vpts() vp: vertical profile vp: vertical profile vp: vertical profile vp: vertical profile
  18. Time series of vertical profiles vpts <- bind_into_vpts(vp, vp, vp)

    # read file with: read_vpts("vpts_file.txt") # regularize with: regularize_vpts() vp: vertical profile Irregular time series of vertical 
 profiles (class vpts) radar: KBRO # profiles: 95 time range (UTC): 2017-05-14 00:09:00 – 2017-05-14 13:25:00 time step (s): min: 300 max: 1800 vpts: vertical profile time series vp: vertical profile vp: vertical profile vp: vertical profile
  19. Data standards •  Supported pvol formats: ODIM (Europe), NEXRAD (US),

    Vaisala Iris (e.g. Canada) radar file pvol: polar volume
  20. Data standards •  Supported pvol formats: ODIM (Europe), NEXRAD (US),

    Vaisala Iris (e.g. Canada) •  Export vp format of vol2bird: ODIM bird profile radar file pvol: polar volume vp: vertical profile
  21. vp: vertical profile vp: vertical profile Data standards •  Supported

    pvol formats: ODIM (Europe), NEXRAD (US), Vaisala Iris (e.g. Canada) •  Export vp format of vol2bird: ODIM bird profile •  Export vpts format: tabular format under discussion radar file pvol: polar volume vp: vertical profile vpts: vertical profile time series
  22. Roadmap •  Range bias correction of PPIs •  Inclusion of

    the MistNet segmentation model (Lin et al. 2019 Methods Ecol. Evol.) •  Unit tests and continuous integration •  Submission for rOpenSci code review •  …
  23. bioRad is currently used for projects in Europe, US, Canada

    and Colombia… … but we hope it can become the go-to tool in R for all biological studies using weather radar data.
  24. Thank you! Desmet et al. (2019) Biological analysis and visualization

    of weather radar data. Presentation. http://bit.ly/biorad-irac2019 adokter.github.io/bioRad oscibio.inbo.be