Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS Personalizeを活用した レコメンドシステム構築事例 / aws person...
Search
pigooosuke
June 11, 2020
Technology
1
5.1k
AWS Personalizeを活用した レコメンドシステム構築事例 / aws personalize recsys
pigooosuke
June 11, 2020
Tweet
Share
Other Decks in Technology
See All in Technology
Zephyr RTOSを使った開発コンペに参加した件
iotengineer22
1
170
Connect 100+を支える技術
kanyamaguc
0
160
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
2
690
MUITにおける開発プロセスモダナイズの取り組みと開発生産性可視化の取り組みについて / Modernize the Development Process and Visualize Development Productivity at MUIT
muit
1
5.7k
AI専用のリンターを作る #yumemi_patch
bengo4com
5
2.3k
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
250
解析の定理証明実践@Lean 4
dec9ue
1
210
ドメイン特化なCLIPモデルとデータセットの紹介
tattaka
2
540
本が全く読めなかった過去の自分へ
genshun9
0
730
Liquid Glass革新とSwiftUI/UIKit進化
fumiyasac0921
0
310
Fabric + Databricks 2025.6 の最新情報ピックアップ
ryomaru0825
1
160
高速なプロダクト開発を実現、創業期から掲げるエンタープライズアーキテクチャ
kawauso
2
3.6k
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
Music & Morning Musume
bryan
46
6.6k
Building Adaptive Systems
keathley
43
2.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Building Applications with DynamoDB
mza
95
6.5k
How STYLIGHT went responsive
nonsquared
100
5.6k
The Language of Interfaces
destraynor
158
25k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
240
Transcript
© - BASE, Inc. AWS Personalizeを活⽤した レコメンドシステム構築事例
© - BASE, Inc. ⾃⼰紹介 齋藤 勇介 BASE株式会社 DataStrategy Team
‧データ分析、機械学習を活⽤した開発 ‧データ集計から予測モデル作成、データ配信まで何でも ‧過去にBASEで取り組んだ事例 ‧特集コンテンツの⾃動⽣成とレコメンドサービスの取り組み ‧機械学習にアノテーションを活⽤して、商品検索の関連キーワード機能を作る BASE開発チームブログ (https://devblog.thebase.in/)
© - BASE, Inc. アジェンダ . 「BASE」紹介 . 「BASE」のレコメンドシステム紹介 .
Amazon Personalizeの導⼊ . 効果検証 . 運⽤上のTips . まとめ
© - BASE, Inc. 「BASE」紹介
© - BASE, Inc. ネットショップ作成サービス「BASE」 出店ショップ数 (個⼈‧法⼈‧⾏政を含む) 100万ショップ以上 BASEかんたん決済利⽤料 3.6%+40円
サービス利⽤料 % コンセプト 「誰でも簡単に使えるネットショップ作成サービス」 初期費⽤‧⽉額費⽤ 0円 ショップオーナーのサポート機能が充実! 個⼈でも決済機能をかんたん導⼊。 審査もスピーディー! クレジットカード 銀⾏振込 コンビニ決済‧Pay-easy 後払い (BASE Apps) キャリア決済
© - BASE, Inc. 「BASE」のレコメンドシステム紹介
© - BASE, Inc. ショッピングアプリ「BASE」 ユーザーの嗜好に合うコンテンツをレコメンド 例えばアプリのホーム画⾯では、 - 今⽇のおすすめ商品 -
今⽇のおすすめショップ - テーマ別特集 にて稼働中
© - BASE, Inc. ショッピングアプリ「BASE」 ユーザーの嗜好に合うコンテンツをレコメンド 例えばアプリのホーム画⾯では、 - 今⽇のおすすめ商品 -
今⽇のおすすめショップ - テーマ別特集 にて稼働中 今⽇の話はこのエリア
© - BASE, Inc. ECS API Proxy ECS ALB Internal
ALB ECS 計算batch レコメンド配信基盤 API A.協調フィルタリング ECS ECS B.Factorization Machines ECS ECS C. ⼈気順ランキング
© - BASE, Inc. レコメンド配信基盤 ‧アルゴリズム - 協調フィルタリング - Factorization
Machines - ⼈気順ランキング ‧予測‧計算 - リアルタイムでの予測はしておらず、バッチ計算結果を表⽰ ‧配信ルール - 前段のAPI Proxyで制御
© - BASE, Inc. アルゴリズム運⽤ タイプ メインアルゴリズム (予測可能ユーザー) サブアルゴリズム (予測不可ユーザー)
A 協調フィルタリング ⼈気順ランキング B Factorization Machines ⼈気順ランキング ‧2種類のアルゴリズムを並⾏運⽤ ‧学習に含まれていないor新規ユーザーには、各属性に合った⼈気商品を提⽰ ‧複数のアルゴリズムを運⽤することで、推薦結果によるバイアスを受けた ⾏動ログで学習し続けてしまう事象を軽減
© - BASE, Inc. ⼀応の運⽤は回っていたが、 いくつか懸念点が、、、
© - BASE, Inc. 懸念点 メンテナンス性 アルゴリズムの特性 モデル精度
© - BASE, Inc. アルゴリズムの特性 ‧課題 協調フィルタリング、Factorization Machinesともに、 商品全体に対するユーザーの嗜好性を推定するもので、 モデル学習時に時系列性を取り⼊れるのが難しい
→ 直前までの⾏動を考慮したレコメンドが出来ない ‧どうする? - ユーザーのセッションベースのレコメンドモデルを作る? - 学習にGPU必須。環境作りなども少し億劫 - 新規モデルの開発 - その改善のリターンは⾒込める?
© - BASE, Inc. メンテナンス性 ‧課題 所々で独⾃実装が⼊っていて、担当者がいなくなった時に メンテナンスや緊急対応が難しそう ‧どうする? -
ML Opsあるある。どうする?
© - BASE, Inc. モデル精度 ‧課題 - 既存の運⽤モデルはベストな選択なのか? - より良いモデルは存在するのでは?
- 学習パラメーターもある程度⾒直す必要があるが、放置状態 ‧どうする? - 新規モデルの開発 - その改善のリターンは⾒込める? - 学習パラメーターの検証 - やりたいけどやっていない
© - BASE, Inc. Amazon Personalizeの導⼊
© - BASE, Inc. 2019年6⽉ Amazon Personalizeが 東京リージョンで利⽤可能に
© - BASE, Inc. 2019年10⽉ 「BASE」で Amazon Personalizeの運⽤開始
© - BASE, Inc. 課題点解消 ‧アルゴリズムの特性 「HRNN」という定義済みアルゴリズムを使えば、 セッションベースの学習が可能 ‧メンテナンス性 最低限、csvを3file⽤意すれば⼤丈夫
運⽤開始から8ヶ⽉経過するも、コード修正は2回だけ 障害も発⽣せず ‧モデル精度 最適パラメーターの探索も設定次第で簡単に可能
© - BASE, Inc. ⾊々と理由を挙げましたが、 どれぐらいの精度が出るものか検証してみたい という動機が⼀番⼤きかったです
© - BASE, Inc. ショッピングアプリ「BASE」 「今⽇のおすすめ商品」枠 にて、検証開始
© - BASE, Inc. ECS API Proxy ECS ALB Internal
ALB ECS レコメンド配信基盤 既存のアルゴリズム Lambda Personalize ECS Personalize DynamoDB データ投⼊ NG商品など の情報 出⼒調整 レコメンド取得
© - BASE, Inc. 効果検証
© - BASE, Inc. 計測指標 ͬͱݟΔը໘ ΞϓϦϗʔϜը໘ ৄࡉը໘ 1. 閲覧率
2. お気に⼊り率 3. カート追加率
© - BASE, Inc. 運⽤実績 閲覧率 お気に⼊り率 カート追加率 ‧Personalize(Per)は、カート追加率で最も優れた予測を実現 ‧閲覧率では、既存のモデルに勝てないこともある
- アルゴリズムの特性、カスタマイズ性に起因 ‧回遊性を重視するのか、売上を重視するのかでより良い選択を
© - BASE, Inc. 運⽤上のTips
© - BASE, Inc. 学習パラメーター 最重要! 必要な時だけ、ハイパーパラメーターチューニングする Perform HPO /
Perform AutoMLというパラメーターの仕様 をよく理解して、毎回チューニングしないようにする ちなみに、 運⽤中のデータサイズでチューニングすると、 チューニングなし学習の約15回分の請求がきます
© - BASE, Inc. 未学習ユーザーへの予測 学習時に含まれていないユーザーに⼈気順のitemが出る 新規ユーザーや⻑期⾮ログインユーザーに対して、 共通のレコメンドがされ、 Personalize内での調整が今の所できない 別途取得したユーザー属性元にレコメンドしたい場合は、
追加で拡張する必要がある
© - BASE, Inc. まとめ
© - BASE, Inc. Amazon Personalizeを使ってみて - ⼿間を掛けずにレコメンドサービスを開発できるツール - メンテナンスコストも削減可能
- ハイパーパラメータチューニングも容易
© - BASE, Inc. ご清聴ありがとうございました